Epsilon-Kugeln und das Innere < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:18 Sa 30.04.2011 | Autor: | xcrane |
Hallo
Ich habe eine allgemeine Verständnisfrage zu Epsilon-Kugeln:
Eine Epsilonkugel ist ja so definiert:
(X,d) sei ein metrischer Raum, x [mm] \in [/mm] X und [mm] \varepsilon [/mm] > 0, wobei [mm] \varepsilon [/mm] eine beliebig gegebene reelle, positive Zahl ist.
Dann ist [mm] k(x,\varepsilon) [/mm] = {y [mm] \in [/mm] X; d(x,y) < [mm] \varepsilon [/mm] } Epsilon-Kugel von x in X.
D.h. aber, ich habe dann die Epsilonkugel des Abstandes von x und y oder? Bzw. es gibt ein Epsilon, welches größer als der Abstand der beiden Punkte ist.
Wie definiere bzw. konstruiere ich aber nun eine Epsilonkugel um einen einzigen Punkt, also z.B. x?
Ein Beispiel:
Wenn ich jetzt untersuchen möchte, ob ein Punkt x ein innerer Punkt von A ist, wobei A [mm] \subseteq [/mm] X ist, sage ich ja, x [mm] \in [/mm] A [mm] \subseteq [/mm] X, falls ein [mm] \varepsilon [/mm] > 0 existiert, sodass k(x, [mm] \varepsilon) \subseteq [/mm] A. In diesem Beispiel habe ich ja gar keinen zweiten Punkt, auf dem ich ein Abstand zwischen einem anderen Punkt definieren kann.
Danke im Voraus.
Grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
du sagst
> Dann ist [mm] $k(x,\varepsilon) =\{ y \in X; \,d(x,y) < \varepsilon \}$ [/mm] Epsilon-Kugel von x in X.
Das muss man sich mal auf der Zunge zergehen lassen:
"Die Menge aller Punkte $y$, die in $X$ liegen und deren "Abstand" zu deinem festen Punkt $x$ kleiner ist als [mm] $\varepsilon$."
[/mm]
Das bezieht sich nicht auf ein $y$, sondern auf alle Punkte, die näher an $x$ liegen als [mm] $\varepsilon$. [/mm] Das ist jetzt ein bisschen trivial ausgedrückt, in Wirklichkeit ist eine Metrik nicht unbedingt der Abstand, den man aus dem Alltag kennt, sondern eine "Art" Abstand (du kennst sicher verschiedene Metriken). Außerdem würde der Mathematiker nicht "Punkte" sagen, sondern Elemente von $X$. Aber zum Verständnis kann man das mal so sagen.
Bei dem alltäglichen Abstand im [mm] $\IR^2$, [/mm] entspricht die Epsilonkugel übrigens dem Inneren eines Kreises mit Radius [mm] $\varepsilon$ [/mm] um $x$. Eben alle Punkte mit Abstand kleiner [mm] $\varepsilon$ [/mm] zu $x$.
Im [mm] $\IR^3$ [/mm] ist es dann mit dem alltäglichen Abstand tatsächlich eine Kugel um $x$.
|
|
|
|