www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Endomorphismus
Endomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismus: eindeutig bestimmte Endomorpis
Status: (Frage) beantwortet Status 
Datum: 14:11 Di 29.04.2008
Autor: Aleksa

Aufgabe
Es sei f: V-> V ein Endomorphismus eines end-dim VR.
zeigen sie : es gibt eindeutig bestimmte Endomorphismen N,D:V-> V mit den folgenden Eigenschaften:
1) D ist diagonalisierbar, N ist nilpotent
2)ND=DN
3)f=D+N

Hallo alle zusammen,

ich hätte eine Frage und zwar , weiss ich nicht genau, wie ich die Eindeutigkeit zeigen soll! Die Eigenschaften habe ich bewiesen!

Hoffe einer kann mir einen Tip geben...dankee!

Liebe Grüße

        
Bezug
Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Di 29.04.2008
Autor: felixf

Hallo

> Es sei f: V-> V ein Endomorphismus eines end-dim VR.
>  zeigen sie : es gibt eindeutig bestimmte Endomorphismen
> N,D:V-> V mit den folgenden Eigenschaften:
>  1) D ist diagonalisierbar, N ist nilpotent
> 2)ND=DN
>  3)f=D+N
>  
> ich hätte eine Frage und zwar , weiss ich nicht genau, wie
> ich die Eindeutigkeit zeigen soll! Die Eigenschaften habe
> ich bewiesen!

Ich wuerd es so machen: erstmal schreibst du $f = D + N = D' + N'$ mit zwei Paaren solcher Matrizen, also $D, N$ wie oben und $D', N'$ ebenfalls mit $D' N' = N' D'$ und $D$ diag'bar, $N'$ nilpotent.

Dann betrachtest du $D - D'$. Du musst zeigen, dass es diagonalisierbar ist; dazu zeige, dass $D$ und $D'$ simultan diagonalisierbar sind (dies folgt aus $D D' = D' D$); das hattet ihr sicher schonmal als Resultat in der VL oder als Uebungsaufgabe. Dann schau dir $N' - N$ an; dies ist nilpotent (da ebenfalls $N' N = N N'$ ist).

Tja, und jetzt hast du also einen diagonalisierbaren Endomorphismus, welcher nilpotent ist. Welcher kann das sein? :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]