www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Endomorphismus
Endomorphismus < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Mo 11.12.2006
Autor: math_begin

Aufgabe
Sei [mm] V=\{\vektor{x_1 \\ x_2 \\ x_3} \in \IR^3 | x_1 -x_2 -2x_3=0 \}, w_0=\vektor{0 \\ -1 \\ \bruch{1}{2}}, w_1=\vektor{1 \\ 1 \\ 0}, w_2=\vektor{2 \\ 0 \\ 1}. [/mm]

Wie viele Endomorphismen F:V [mm] \to [/mm] V gibt es mit [mm] F(w_0)=F(w_1)=F(w_2). [/mm]

Hallo.
Bei dieser Aufgabe komme ich einfach nicht weiter.
Ich hab mir überlegt, dass wenn es einen Endomorphismus gebe, wäre F linear und bildet von V auf V ab.
Da [mm] F(w_0)=F(w_1)=F(w_2) [/mm] gilt, ist F nicht injektiv und damit auch nicht surjektiv.
Aber wie komme ich weiter?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Mo 11.12.2006
Autor: MatthiasKr

Hallo,

> Sei [mm]V=\{\vektor{x_1 \\ x_2 \\ x_3} \in \IR^3 | x_1 -x_2 -2x_3=0 \}, w_0=\vektor{0 \\ -1 \\ \bruch{1}{2}}, w_1=\vektor{1 \\ 1 \\ 0}, w_2=\vektor{2 \\ 0 \\ 1}.[/mm]
>  
> Wie viele Endomorphismen F:V [mm]\to[/mm] V gibt es mit
> [mm]F(w_0)=F(w_1)=F(w_2).[/mm]
>  Hallo.
>  Bei dieser Aufgabe komme ich einfach nicht weiter.
>  Ich hab mir überlegt, dass wenn es einen Endomorphismus
> gebe, wäre F linear und bildet von V auf V ab.
>  Da [mm]F(w_0)=F(w_1)=F(w_2)[/mm] gilt, ist F nicht injektiv und
> damit auch nicht surjektiv.
>  Aber wie komme ich weiter?
>  

Nur ein paar tips von mir:
- überlege dir zuerst, wieviele dimensionen V hat
- was gilt also für die [mm] $w_i$? [/mm] Kannst du zb. [mm] $w_2$ [/mm] als linearkombination
  von w1 und w2 darstellen? wenn ja, wie?
- nutze jetzt aus, dass alle w's auf den gleichen vektor abgebildet werden
  sollen und leite bedingungen dafür ab

VG
Matthias


>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Endomorphismus: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:13 Mo 11.12.2006
Autor: math_begin

Hallo.
Also dim V=2.
Da F nicht surjektiv folgt Bild F [mm] \not= [/mm] V.
Also dim Bild F < dim V=2

Aber wie komme ich von da weiter?
Hast du da noch einen Tipp für mich?
LG

Bezug
                        
Bezug
Endomorphismus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Di 12.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]