www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Endomorphismenmenge
Endomorphismenmenge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismenmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Sa 15.11.2008
Autor: kittie

Hallo zusammen,

kann mir vielleicht jemand dabei helfen die Menge [mm] End(\IZ)=\{f:\IZ\rightarrow \IZ; f ist Homomorphismus \} [/mm] der Menge der Endomorphismen von [mm] (\IZ,+) [/mm] nach [mm] (\IZ,+) [/mm] zu bestimmen!?

Kann man das irgendwie geschickt anstellen, ohne alle Möglichkeiten auszuprobieren.

Habe bereits bewiesen, dass End(G) mit (G,+) abelscher Gruppe mit (f+g)(x):=f(x)+g(x) und (f*g)(x)=f(g(x)) ein Ring ist!

Viele Grüße

die kittie

        
Bezug
Endomorphismenmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Sa 15.11.2008
Autor: andreas

hi

überlege dir, dass ein endmomorphismus $f: [mm] \mathbb{Z} \longrightarrow \mathbb{Z}$ [/mm] bereits durch $f(1)$ festgelegt ist (bestimme zuerst $f(n)$ für $n [mm] \in \mathbb{N}$ [/mm] in abhängigkeit von $f(1)$, dann auch für negative $n$). auf was kann man nun die $1$ abbilden?

grüße
andreas

Bezug
                
Bezug
Endomorphismenmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Sa 15.11.2008
Autor: kittie

also das neutrale element muss ja auf sich selbst abgebildet werden in diesem fall, aufgrund der homomorphieeigenschaft!
Aber was meinst du mit der 1 bzw. f(1)?kann dir noch nicht ganz folgen, leider!
Kannst du mir mit einem Ansatz viell. nochmal weiterhelfen?

vg

Bezug
                        
Bezug
Endomorphismenmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Sa 15.11.2008
Autor: andreas

hi

> also das neutrale element muss ja auf sich selbst
> abgebildet werden in diesem fall, aufgrund der
> homomorphieeigenschaft!

ja.


>  Aber was meinst du mit der 1 bzw. f(1)?kann dir noch nicht
> ganz folgen, leider!

angenommen es ist $f: [mm] \mathbb{Z} \longrightarrow \mathbb{Z}$ [/mm] ein endomorphismus. es sei $f(1) = m [mm] \in \mathbb{Z}$, [/mm] was ist dann $f(2)$ (bedenke $2 = 1 + 1$)? und was ist $f(3)$?


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]