www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Endlichkeit eines Integrals
Endlichkeit eines Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endlichkeit eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Mi 31.05.2006
Autor: djmatey

Hallo,
ich muss die Endlichkeit eines Integrals zeigen:
[mm] \integral^{\infty}{\bruch{1}{x*(lnx)^{1+\varepsilon}} dx} [/mm]
Ich bekomme als Stammfunktion
- [mm] \bruch{1}{\varepsilon * (lnx)^{\varepsilon}} [/mm]
heraus, aber bei den Limes-Betrachtungen habe ich Schwierigkeiten, da meiner Meinung nach das Integral unendlich ergibt.
Die untere Integralsgrenze ist nicht angegeben, da das Integral allgemein beschrieben wird als
[mm] \integral^{\infty}\bruch{\phi (t)}{t} [/mm] dt,
und in meinem Fall eben
[mm] \phi [/mm] (t) = [mm] (lnt)^{-(1+\varepsilon)} [/mm]
gilt, d.h. die untere Grenze hängt anscheinend von der Wahl des [mm] \phi [/mm] ab. Es kann in diesem Fall eigentlich nur die 0 oder die 1 in Frage kommen.
Über Hilfe würde ich mich freuen.
Danke im Voraus und schöne Grüße,
Matthias.

        
Bezug
Endlichkeit eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:09 Mi 31.05.2006
Autor: Event_Horizon

Sehe ich das dann richtig, es geht um die untere Grenze des INtervalls? Die obere Grenze  liefert ja tatsächlich beim Einsetzen eine Konvergenz gegen 0, solange [mm] $\epsilon>0$ [/mm]

Bezug
                
Bezug
Endlichkeit eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Mi 31.05.2006
Autor: djmatey

Ich weiß nicht, welche untere Grenze gewählt werden muss - ich vermute, es ist die 1.
Wenn Du da eine Konvergenz gegen 0 siehst, wäre es nett, wenn Du das mal ausführen könntest, denn so kann ich damit nichts anfangen.
Dank & Gruß,
Matthias.

Bezug
                        
Bezug
Endlichkeit eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Do 01.06.2006
Autor: MatthiasKr

Hallo,

du erhältst als stammfunktion richtigerweise [mm] $-\bruch{1}{\varepsilon \cdot{} (lnx)^{\varepsilon}} [/mm] $. Wichtig ist für die aufgabe jetzt in erster linie, dass die stammfunktion einen endlichen grenzwert für [mm] $x\to \infty$ [/mm] besitzt und das tut sie auch, nämlich die 0. Du hast recht für $x=1$ ist die stammfunktion nicht definiert, nimm also als untere grenze zB. die 2 und du hast ein konvergentes integral.

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]