www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Ellipse erstellen
Ellipse erstellen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ellipse erstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Do 19.08.2004
Autor: haegar

Ich habe diese Frage in keinem weiteren Forum gestellt

hi mathecracks
Aus bereits ellipsenähnlich angeordneten Punkten (1-n) möchte ich eine Ellipsengleichung [mm]x^2 + ay^2 - b[/mm] finden, die den Punkten am ehesten entspricht, sprich letzlich muss wohl deren Abstand zur 'optimalen' Ellipse minimal sein.
Glaub dass mit einer Abstandsformel alle a und b von 1-n berechnet werden müssen, um dann aus denen Mittelwerte zu bilden, die widerum die gesuchte Gleichung ergeben. Oder? wenn, wie?
Wie ermittelt man dann aus der Gleichung die Wahrscheinlichkeit das die Punkte auf der Ellipse lagen?


Danke für eine Hilfestellung bei diesem oder ein ähnlichem Beispiel - ich weis nämlich nicht genau wie das zu rechnen ist

Paul

        
Bezug
Ellipse erstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Fr 20.08.2004
Autor: Brigitte

Hallo Paul!

>  Aus bereits ellipsenähnlich angeordneten Punkten (1-n)
> möchte ich eine Ellipsengleichung [mm]x^2 + ay^2 - b[/mm] finden,
> die den Punkten am ehesten entspricht, sprich letzlich muss
> wohl deren Abstand zur 'optimalen' Ellipse minimal sein.
>
> Glaub dass mit einer Abstandsformel alle a und b von 1-n
> berechnet werden müssen, um dann aus denen Mittelwerte zu
> bilden, die widerum die gesuchte Gleichung ergeben. Oder?
> wenn, wie?

Das finde ich nicht so gut, schließlich möchtest Du ja gleichzeitig den Abstand aller Punkte zur optimalen Ellipse minimieren.

>  Wie ermittelt man dann aus der Gleichung die
> Wahrscheinlichkeit das die Punkte auf der Ellipse lagen?

Diese Wkt. ist auf jeden Fall 0, wenn man davon ausgeht, dass die Punkte zufällig im [mm] $IR^2$ [/mm] liegen können. Dann sind die Koordinaten der Punkte (als Zufallsvariablen) stetig verteilt, und die Wkt., dass eine stetig verteilte Zufallsvariable einen bestimmten Wert annimmt, ist 0.

Ich schlage folgendes vor:

Du transformierst alle Werte gemäß [mm] $\tilde x_i=x_i^2$ [/mm] und [mm] $\tilde y_i=y_i^2$, [/mm] so dass die Ellipsengleichung übergeht nach:

[mm]\tilde x+a\tilde y-b=0[/mm]

bzw.

[mm]\tilde y=\frac{b}{a} - \frac{1}{a}\tilde x[/mm]

oder schreiben wir besser

[mm]\tilde y=\tilde b + \tilde a\tilde x.[/mm]

Du möchtest nun die Parameter [mm] $\tilde [/mm] b$ und [mm] $\tilde [/mm] a$ so bestimmen, dass

[mm]\sum\limits_{i=1}^n (\tilde y_i-(\tilde b + \tilde a\tilde x_i))^2[/mm]

möglichst klein wird. Das ist das bekannte Problem der linearen Regressionsrechnung (mit der Kleinste-Quadrate-Methode). Die optimale Lösung für [mm] $\tilde [/mm] b$ und [mm] $\tilde [/mm] a$ findest du in fast jedem einführenden Statistik-Buch.

Viel Erfolg!
Brigitte


Bezug
                
Bezug
Ellipse erstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 Sa 21.08.2004
Autor: haegar

>Das ist das bekannte Problem der linearen Regressionsrechnung (mit der >Kleinste-Quadrate-Methode). Die optimale Lösung für [mm]\tilde b[/mm] >und [mm]\tilde a[/mm] findest du in fast jedem einführenden Statistik->Buch.

welches ich mir jetzt auszuleihen gedenke,  danke für deine Antwort Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]