Ellipse < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:38 Di 14.11.2006 | Autor: | Nr.4 |
Aufgabe | Sei E eine Ellipse mit den Brennpunkten [mm] F_{1} [/mm] und [mm] F_{2}. [/mm] Zeigen Sie, dass jeder von [mm] F_{1} [/mm] ausgehende Lichtstrahl bei Reflexion an E in den Punkt [mm] F_{2} [/mm] geworfen wird und umgekehrt. |
Mein Lösungsansatz sieht so aus:
Ich wähle eine Ellipse, bei der die beiden Brennpunkte auf der x-Achse liegen. Durch den Mittelpunkt lege ich die y-Achse. In diesem Koordinatensystem hat die Ellipse dann die Gleichung:
[mm] (\bruch{x}{a})^{2} [/mm] + [mm] (\bruch{y}{b})^{2} [/mm] = 1
mit [mm] a,b\in\IR [/mm] und a [mm] \ge [/mm] b [mm] \ge [/mm] 0
Die Brennpunkte haben die Koordinaten: [mm] F_{1,2} [/mm] = [mm] (\pm [/mm] f / 0) mit
[mm] f^{2} [/mm] = [mm] a^{2} [/mm] - [mm] b^{2}
[/mm]
Wenn ich jetzt einen beliebigen Punkt auf der Ellipse P ( u / v) wähle, muss ich die Tangentengleichung in diesem Punkt bestimmen, daraus die Normalengleichung bestimmen und die Winkel überprüfen:
d.h. der Winkel zwischen den beiden Strahlen von [mm] F_{1} [/mm] und [mm] F_{2} [/mm] zum Punkt P muss von der Normalen in P halbiert werden.
Ab hier komme ich nicht weiter. Wenn ich einsetzen will, erhalte ich endlose Gleichungen mit viel zu vielen Variablen! Ist mein Ansatz überhaupt richtig? kann mir da jemand helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:44 Do 16.11.2006 | Autor: | leduart |
Hallo
Die Ellipse ist der geometrische Ort aller Pkt. die von F1,F2 feste Summe des Abstands haben.
Zeige dass die Winkelhalbierende von 2 Brennstrahlen überall größere Summe des Abstands hat, als im Scheitel; dann hat sie nur einen Pkt mit der Ellipse gemeinsam und liegt im übrigen ausserhalb, ist also Tangente.
Wenn du anders rechnen willst, würd ich auch mit der Winkelhalbierenden der Brennstrahlen anfangen, und zeigen, dass sie Tangente ist.
Mach dazu mal erst ne Zeichnung!
Gruss leduart
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 18:52 Do 16.11.2006 | Autor: | Nr.4 |
> Wenn du anders rechnen willst, würd ich auch mit der
> Winkelhalbierenden der Brennstrahlen anfangen, und zeigen,
> dass sie Tangente ist.
> Mach dazu mal erst ne Zeichnung!
Du meinst doch dass die Winkelhalbierende der Brennstrahlen Normale und nicht Tangente ist oder? Und wie komme ich auf die Gleichung der Winkelhalbierenden? Die Zeichnung habe ich gemacht.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:45 Do 16.11.2006 | Autor: | leduart |
Hallo
Tangente und Normale sind Winkelhalbierende, Aussen winkel und Innenwinkel.
Das allerdings aufzuschreiben und rechnerisch zu lösen hab ich keine Lust, es ist sicher recht länglich, Aber da du ja in dem einen Dreieck alle Winkel hast bzw. den tan, und der Aussenwinkel der halbiert wird die Summe der 2 nicht anliegenden Winkel im Dreieck ist gehts sicher mit Additionstheoremen. Der geometrische Beweis ist so viel einfacher, warum musst du rechnen? Ich tus garantiert nicht, lass aber die Frage angestellt.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Sa 18.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|