www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Elemente endlicher Ordnung
Elemente endlicher Ordnung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elemente endlicher Ordnung: Hilfe bei Bearbeitung
Status: (Frage) beantwortet Status 
Datum: 22:00 Do 19.01.2012
Autor: Schachtel5

Aufgabe
Ein Element g einer Gruppe hat endliche Ordnung, wenn ein n [mm] \in \IN [/mm] existiert mit [mm] g^n=e. [/mm] Bestimmen Sie die Elemente endlicher Ordnung in O(2).

Hallo, ich gebe mir Mühe, es selbst zu lösen, aber es will nicht klappen.
Die Elemente in O(2) sind 2x2 Matrizen, die orthogonal sind, also [mm] A^{-1}=A^t. [/mm] Was ich mir bisher überlegt habe ist: Die Einheitsmatrix e (hat Ordnung 1?),  dann die Drehungen, denn wenn man sich im Kreis dreht, kommt man ja immer wieder bei seinem Ausgangspunkt an(also bei einem Winkel von 2pi), ich hoffe, es ist erkennbar, was ich meine^^: [mm] \begin{pmatrix} cos(t) & -sin(t) \\ sin(t) & cos(t) \end{pmatrix} [/mm]
und die Spiegelungen , die sich in die Form [mm] \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} [/mm] bringe lassen, haben die Ordnung 2. Aber ich denke, dass ist doch so noch nicht wirklich okay, wäre super, wenn mir jemand helfen kann, wie ich vorgehen kann. Lg

        
Bezug
Elemente endlicher Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Fr 20.01.2012
Autor: chrisno

Deine Vorgedanken sind ganz brauchbar. Nun musst Du allgemein werden. Eine 2x2 Matrix hat vier Elemente [mm] $a_{11}$ [/mm] bis [mm] $a_{22}$. [/mm] Durch die Bedingung dass sie zu O(2) gehört, ergeben sich Einschränkungen für die Matrixelemente. Welche?
Dann kannst Du loslegen. [mm] $A^1=E$ [/mm] hinschreiben und feststellen, dass das nur für A=E stimmt.
[mm] $A^2=E$ [/mm] hinschreiben und nachsehen, für welche das gilt.
Wie sieht es mit [mm] $A^3$, $A^n$ [/mm] aus?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]