www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Elemente Lös A
Elemente Lös A < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elemente Lös A: Idee
Status: (Frage) beantwortet Status 
Datum: 16:35 So 08.04.2012
Autor: Coup

Aufgabe
[mm] \pmat{ 3 & 0&-2 \\ 2 & 1&-1\\-4&1&3 } [/mm]
Bestimmen Sie alle a e R, für die La:=Lös(A, [mm] \vektor{1 \\ a\\0} [/mm] nicht leer ist, und für jedes solche a ein v e La

Hi.
Ich habe mit dem Gauß angefangen.
[mm] \pmat{ 3 & 0&-2&1 \\ 2 & 1&-1&a\\-4&1&3&0 } [/mm]
Als Ergebnis bekomme ich
[mm] \pmat{ 3 & 0&-2&1 \\ 0 & 3&1&3a-2\\0&0&0&-3a+6 } [/mm]

Habe ich bisher richtig gerechnet ? Waren nur 3 Rechenschritte bis hierhin.
Doch wie gehts nun weiter ?

lg
Flo


        
Bezug
Elemente Lös A: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 So 08.04.2012
Autor: leduart

Hallo
ich habe eine andere dritte Zeile, rechne nach oder uns vor.
wenn du es dann richtig hast schreib einfach x3=.. x_20 usw. wenn du dafür mügliche lÖsungen hast. Für welche a gibt es dann keine?
Gruss leduart

Bezug
                
Bezug
Elemente Lös A: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 So 08.04.2012
Autor: Coup

[mm] \pmat{ 3 & 0 & -2 & 1 \\ 2 & 1 & -1 & a \\ -4 & 1 & 3 & 0} [/mm] -> 3*Z2-2*Z1
[mm] \pmat{ 3 & 0 & -2 & 1 \\ 0 & 3 & 1 & 3a-2 \\ -4 & 1 & 3 & 0}->3*z3+4*z1 [/mm]
[mm] \pmat{ 3 & 0 & -2 & 1 \\ 0 & 3 & 1 & 3a-2 \\ 0 & 3 & 1 & 4}-> [/mm] z3-z2
[mm] \pmat{ 3 & 0 & -2 & 1 \\ 0 & 3 & 1 & 3a-2 \\ 0 & 0 & 0 & -3a+6} [/mm]

Ich kann keinen Fehler finden.
Demnach würde ich sagen, dass gilt
0 = 0x1+0x2+0x3 = -3a+6
Somit ist es für a=2 lösbar ?

Bezug
                        
Bezug
Elemente Lös A: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 So 08.04.2012
Autor: leduart

Hallo. du hast recht und ich mich verrechnet. ja 0*x3=-3a+6 ist nur lösbar mit x3=0 und a=2, danm musst du aber noch nachprüfen wie es mit x2 und x1 ist.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]