www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Elemente Koeffizientenmatrix
Elemente Koeffizientenmatrix < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elemente Koeffizientenmatrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:13 Mo 25.11.2013
Autor: PxBx

Aufgabe
Der Gauß-Algorithmus kann durch eine Eliminationsmatrix mit der die Koeffizientenmatrix E multipliziert wird (von links) realisiert werden.
Wie lauten die Elemente E21,E31,E32 für die Koeffizientenmatrix

A = [mm] \pmat{ 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 0 & 1 } [/mm] ?

Denke die Lösung ist hier recht einfach wenn man weiß was mit der Frage gemeint ist...
ich verstehe dies allerdings leider nicht :)

Kann mir bitte jemand einen Hinweis geben was hiermit gemeint ist, bzw. wo ich hierbei überhaupt ansetzen kann?

Dankeschön :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Elemente Koeffizientenmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Mo 25.11.2013
Autor: angela.h.b.


> Der Gauß-Algorithmus kann durch eine Eliminationsmatrix
> mit der die Koeffizientenmatrix E multipliziert wird (von
> links) realisiert werden.
> Wie lauten die Elemente E21,E31,E32 für die
> Koeffizientenmatrix

>

> A = [mm]\pmat{ 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 0 & 1 }[/mm] ?
> Denke die Lösung ist hier recht einfach wenn man weiß
> was mit der Frage gemeint ist...

Hallo,

glaube ich auch...

Die Bezeichnungen E21,E31,E32 scheinen mir eine Spezialität zu sein, und Du solltest in Deiner Vorlesungsmitschrift finden, was damit gemeint ist.

LG Angela

> ich verstehe dies allerdings leider nicht :)

>

> Kann mir bitte jemand einen Hinweis geben was hiermit
> gemeint ist, bzw. wo ich hierbei überhaupt ansetzen kann?

>

> Dankeschön :)

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]