www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Elementargebiet
Elementargebiet < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elementargebiet: Beweis
Status: (Frage) überfällig Status 
Datum: 21:05 Mo 03.03.2008
Autor: linder05

Aufgabe
Zeige:

Sei [mm] $\mathcal{G}$ [/mm] einfach zusammenhängend. Dann ist [mm] $\mathcal{G}$ [/mm] ein Elementargebiet.

Ich hänge irgendwo fest... Bin mir sicher, ich muss den ein oder anderen Satz miteinbauen (an welcher Stelle?). Kann mir jemand weiterhelfen? Es eilt leider :( Hier mein Versuch:

Ist [mm] $\mathcal{G}\subseteq \mathbb [/mm] C$ ein einfach zusammenhängendes Gebiet, so gilt für jede geschlossene Kurve [mm] $\gamma$ [/mm] in [mm] $\mathcal{G}$ [/mm] und jede holomorphe Funktion [mm] $f:\mathcal{G}\rightarrow \mathbb [/mm] C$:
[mm] \begin{displaymath} \int_{\gamma}f(z)dz=0 \end{displaymath} [/mm]
Jedes einfach zusammenhängende Gebiet ist also ein Elementargebiet.

        
Bezug
Elementargebiet: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 05.03.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Elementargebiet: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:33 Do 06.03.2008
Autor: Marcel

Hallo,

ich kenne leider die Definition des Begriffes Elementargebiet nicht bzw. ich habe es bei Wikipedia mal nachgeguckt:
[]http://de.wikipedia.org/wiki/Elementargebiet

Ich denke, den gesuchten Beweis findest Du hier in Kapitel 30:
[]http://www.mathematik.uni-trier.de/~mueller/AnalysisI-IV.pdf

Er ist in Satz 30.5 mitenthalten, und steht dort in der Richtung:
$b) [mm] \Rightarrow [/mm] a)$ (beachte: Ist $f$ holomorph auf [mm] $\mathcal{G}$, [/mm] so ist $f$ dort insbesondere stetig!), wenn man die dortige Definition des Begriffes einfach zusammenhängend so eingeführt hat und auch die obige Definition aus Wiki des Begriffes Elementargebiet zugrundelegt. Da es aber natürlich einige Charakterisierungen dieser Begriffe gibt, musst Du halt ggf. in Kapitel 30 ein wenig rumstöbern, um das ganze auf Eure Vorlesung analog zu übertragen.

P.S.:
Schade, dass ich die Frage nicht vorher gesehen habe, hoffe, es ist noch nicht zu spät...

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]