www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prozesse und Matrizen" - Einstufige Verflechtung
Einstufige Verflechtung < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einstufige Verflechtung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:32 Di 28.09.2010
Autor: Rotkehlchen

Aufgabe
Ein Kunde möchte insgesamt 20 ME (Mengeneinheiten) Produkte kaufen und hat dafür ein Budget von 52280€ zur Verfügung.

Er kann sowohl die unterste und ausschließlich für den Gebrauch an öffentlichen Einrichtungen vorgesehene Qualitätsklasse p1 für 1889€/ME als auch die Industriequalität p2 für 5389€/ME oder die höchste Reinheitsstufe p3 mit Biosiegel für 6899€/ME alternativ verwenden.

Mit welcher Bestellung [mm] \vec{p}= \vektor{p1\\ p2 \\ p3} [/mm] kann er das gegebene Budget optimal ausschöpfen?
Wie groß ist der Gesamtwert dieser Bestellung?

Also... ich habe bei der Aufgabe nicht wirklich eine Idee, wie ich an sie herangehen soll.
Vielleicht hat ja jemand von euch einen Tipp.

Vielen Dank schonmal

Liebe Grüße

        
Bezug
Einstufige Verflechtung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Di 28.09.2010
Autor: angela.h.b.


> Ein Kunde möchte insgesamt 20 ME (Mengeneinheiten)
> Produkte kaufen und hat dafür ein Budget von 52280€ zur
> Verfügung.
>  
> Er kann sowohl die unterste und ausschließlich für den
> Gebrauch an öffentlichen Einrichtungen vorgesehene
> Qualitätsklasse p1 für 1889€/ME als auch die
> Industriequalität p2 für 5389€/ME oder die höchste
> Reinheitsstufe p3 mit Biosiegel für 6899€/ME alternativ
> verwenden.
>  
> Mit welcher Bestellung [mm]\vec{p}= \vektor{p1\\ p2 \\ p3}[/mm] kann
> er das gegebene Budget optimal ausschöpfen?
>  Wie groß ist der Gesamtwert dieser Bestellung?
>  Also... ich habe bei der Aufgabe nicht wirklich eine Idee,
> wie ich an sie herangehen soll.
>  Vielleicht hat ja jemand von euch einen Tipp.

Hallo,

Das Ziel ist klar?
Wenn ich es recht verstehe, geht es darum, 20 Einheiten möglichst hoher Qualität einzukaufen und dabei das Budget nicht zu sprengen.

Eine Möglichkeit wäre, mal ein bißchen herumzuprobieren.

Helfen könntest Du Dir und den potentiellen Helfern, wenn Du mal erzählen würdest, was bei Euch gerade "dran" ist, was Du davon verstehst und was nicht. Es sieht ja so aus, als wären irgendwelche Optimierungsverfahren besprochen worden.

Gruß v. Angela


Bezug
                
Bezug
Einstufige Verflechtung: Ergänzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 28.09.2010
Autor: Rotkehlchen

Ja, das Ziel, das du nennst, ist richtig.

Also gerade dran sind bei uns Matrizen und Prozesse.
Wir haben uns zunächst damit befasst, die Produktionsmatrix aufzustellen, also den Zusammenhang zwischen Produktionsvektor und Rohstoffvektor herauszuarbeiten. Dann haben wir für verschiedene Mengen an Produkten die Mengen an Rohstoffen berechnet und wie ein gewisser Lagerbestand aufbrauchbar ist.

Joaa.. weiß ja nicht, ob das nun hilfreich ist.
Wäre aber echt toll, wenn sich jemand finden würde, der für diese Aufgabe einen Ansatz finden kann.


Bezug
        
Bezug
Einstufige Verflechtung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:53 Di 28.09.2010
Autor: angela.h.b.


> Ein Kunde möchte insgesamt 20 ME (Mengeneinheiten)
> Produkte kaufen und hat dafür ein Budget von 52280€ zur
> Verfügung.
>  
> Er kann sowohl die unterste und ausschließlich für den
> Gebrauch an öffentlichen Einrichtungen vorgesehene
> Qualitätsklasse p1 für 1889€/ME als auch die
> Industriequalität p2 für 5389€/ME oder die höchste
> Reinheitsstufe p3 mit Biosiegel für 6899€/ME alternativ
> verwenden.
>  
> Mit welcher Bestellung [mm]\vec{p}= \vektor{p1\\ p2 \\ p3}[/mm] kann
> er das gegebene Budget optimal ausschöpfen?
>  Wie groß ist der Gesamtwert dieser Bestellung?

Hallo,

was hast Du denn bisher erreicht?
Hast Du mal ein bißchen experimentiert?

Ich weiß nicht, wie Ihr vorgehen sollt, und ich weiß nicht, was Dein Niedersachsenrechner so alles für Dich tun kann.

Ich würde mich jetzt erstmal mit dem Gleichungssystem

[mm] x_1+x_2+x_3=20 [/mm]
[mm] 1889x_1+5389x_2+6899x_3=52280 [/mm]

beschäftigen.
Das zu lösen und dann mal weiterzuschauen kann ja kein Fehler sein.

Ansonsten sind für mich Deine Informationen und Lösungsansätze zu spärlich um zu wissen, was Ihr tun sollt und wie man sinnvoll helfen kann.

Sollen die Lösungen ganzzahlig sein?

Gruß v. Angela







Bezug
        
Bezug
Einstufige Verflechtung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:45 Mi 29.09.2010
Autor: rabilein1

Meines Erachtens kommst du um das 'Probieren' nicht herum, was im schlimmsten Fall ewig lange dauern kann, bis man die optimale Lösung gefunden hat. Aber heutzutage gibt es ja Super-Computer, die einem langwierige Rechen-Operationen abnehmen.

Mein Ansatz wäre:
Welche erlaubten Kombinationen gibt es?
Fange an mit dem p3: Davon kannst du maximal 7 Stück für insgesamt € 48293 kaufen. Mit dem Rest von € 3987 kannst du keine p2 und noch 2 Stück p1 kaufen. Am Ende hättest du € 209 übrig.

Diese € 209 sind sozusagen die Benchmark.

Nun nimmst du 7 Stück von p3. Was kostet das? Wie viel kannst du nun noch von p2 und von p1 kaufen? Was bleibt übrig? Nur wenn diese Benchmark kleiner wird, ist die Kombinationen optimaler als die vorige, und du hast eine neue Benchmark.

Wenn die Benchmark gleich NULL ist, hast du die Aufgabe gelöst.

Ansonsten musst du weitermachen bis alle Kombinationen durch sind. Und das kann notfalls lange dauern....  

Bezug
        
Bezug
Einstufige Verflechtung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Mi 29.09.2010
Autor: Hugo_Sanchez-Vicario

Hallo rotkehlchen,

du kannst den folgenden Algorithmus verwenden um die Antwort zu finden.

0. Falls 20 Stück der preiswertesten Qualität zu teuer sind, dann ist die Aufgabe nicht lösbar.
1. Versuche 20 mal die höchste Qualität zu kaufen.
2. Falls die Bestellung deine finanziellen Mittel übersteigt, dann ersetzte ein Stück der besten gekauften Qualität durch die nächst niedrigere Stufe und wiederhole Schritt 2.
3. Deine momentane Bestellung ist die optimale Lösung.

einfacheres Beispiel, durchgerechnet:
Qualität schlecht: 3 Euro pro Stück,
Qualität mittel: 5 Euro pro Stück,
Qualität gut: 7 Euro pro Stück

Kaufe 3 Artikel der höchstmöglichen Qualitat für maximal 14 Euro.
-> Schritt 0: 3 mal 3 Euro sind 9 Euro, das geht, d.h. die Aufgabe ist lösbar.
-> Schritt 1: 3 mal 7 Euro sind 21 Euro.
-> Schritt 2: 21 Euro übersteigen das Budget, also einen Artikel der besten gekauften Qualität (gut) durch die nächstschlechtere Stufe (mittel) ersetzten, d.h. statt 3 mal gut jetzt 2 mal gut und 1 mal mittel kaufen und Schritt 2 wiederholen.
-> Schritt 2: 2 mal 7 Euro plus 1 mal 5 Euro sind 19 Euro. Immer noch zu teuer, d.h. wieder einen guten durch einen mittleren Artikel ersetzen und Schritt 2 wiederholen.
-> Schritt 2: 1 mal 7 Euro plus 2 mal 5 Euro sind 17 Euro. Ersetzen, wiederholen.
-> Schritt 2: 0 mal 7 Euro plus 3 mal 5 Euro sind 15 Euro. Oh Mann, immer noch zu teuer. Also ersetzen wir jetzt mittlere Qualität durch schlechte und wiederholen Schritt 2.
-> Schritt 2: 0 mal 7 Euro plus 2 mal 5 Euro plus 1 mal 3 Euro sind 14 Euro. Das Budget wird jetzt nicht mehr überschritten, Schritt 2 wird daher nicht mehr wiederholt.
-> Schritt 3: Der bestmögliche Kauf ist einmal schlechte und zweimal mittlere Qualität.

Ich hoffe die Lösung war verständlich. Natürlich kann man die richtige Lösung erst einmal durch "immer beste, immer mittlere, immer schlechteste Qualität" einengen. Mit diesen Zwischenergebnissen kann man dan das Lösungsverfahren stark beschleunigen.

Das Lösungsverfahren beruht darauf, dass man anfangend vom qualitativ besten Kauf ausgehend immer den nächstschlechteren Kauf nimmt und den ersten Kauf auswählt, der durchführbar ist. Das ist logischerweise der bestmögliche. Schritt 0 prüft nur zur Sicherheit, aber der Kauf überhaupt durchführbar ist.

EDIT: Der Algorithmus ist nicht ganz korrekt.
Es kommt sowieso darauf an, wie man die Gutheit der Bestellung beurteilt, ist die Bestellung drei Mal gute Qualität besser oder schlechter oder genau so gut wie die Bestellung von einmal gut, einmal mittel und einmal schlecht... Die Grundidee bleibt jedoch richtig. Man braucht eine Reihenfolge aller möglichen Bestellungen. (Nur leider durchläuft der angegebene Algorithmus nicht alle möglichen Bestellungen.)


Liebe Grüße
Hugo

Bezug
        
Bezug
Einstufige Verflechtung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mi 29.09.2010
Autor: rabilein1

Eine Erleichterung ist es, sich das Einmal-1889, das Einmal-5389, sowie das Einmal-6899 aufzuschreiben (in drei Spalten).

Nun muss man 52280 minus Spalte1 minus Spalte2 minus Spalte3 einen Wert nahezu an NULL ergeben. Ums schrittweise Probieren kommt man nicht herum.

Als Lösung habe ich:

52280 - 11*1889 - 2*5389 - 3*6899 = 26



Bezug
                
Bezug
Einstufige Verflechtung: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 08:29 Do 30.09.2010
Autor: Hugo_Sanchez-Vicario

... aber es sollten doch 20 und nicht nur 15 Einheiten gekauft werden ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]