www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Einstieg Prädikatenlogik
Einstieg Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einstieg Prädikatenlogik: Beweisen von Prädikat.Formeln
Status: (Frage) beantwortet Status 
Datum: 23:47 Mo 23.04.2007
Autor: sommeralex

Aufgabe
F1 = AxEy(P(x)v)P(y))
F2 = Ax (P(x) v P(f(x)))
F3 = Ax(P(x) v P (g(x)))

Welcher dieser Formeln sind

a) äquivalent
b) erfüllbarkeitsäquivalent

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Logiker!

Was ich weiß: äquivalent bedeutet, unter jeder passenden Struktur der selbe Wahrheitswert, erfüllbarkeitesäquivalent; wenn A gültig ist (unter einer passenden Struktur) dann auch B (unabhängig davon, ob für B weitere passenden Strukturen existieren)

Witzigerweise fehlt mir hier jedoch einfach der praktische Einstieg. Mir ist nicht klar, wie ich so eine Aufgabe lösen kann. Ich erwarte auch nicht die "Lösung" - sehr hilfreich wären einfach Ansätze, wie man sowas prinzipiell angeht. Wer immer mir hilft, ich bin dir sehr, sehr verbunden.

Liebe Grüße,
Alex

        
Bezug
Einstieg Prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 03:18 Di 24.04.2007
Autor: komduck

Zunächst sollten wir uns klar machen das:
F1 <=> Ey(P(y))
Auserdem gilt:
F2 => Ey(P(y))
F3 => Ey(P(y))
F1 erf => F2 erf
F2 erf => F3 erf

mfg komduck

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]