www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Einsetzungsverfahren
Einsetzungsverfahren < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einsetzungsverfahren: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:03 Mo 04.11.2013
Autor: Lou99

Aufgabe
2x-5y=15
[mm] y=\bruch{2}{5}x [/mm] - [mm] \bruch{1}{5} [/mm]

2x-5* [mm] (\bruch{2x}{5} [/mm] - [mm] \bruch{1}{5})=15 [/mm]

2x- [mm] \bruch{10x}{5} [/mm] + [mm] \bruch{5}{5}=15 [/mm]



Ich muss für das Beispiel das Einsetzverfahren anwenden. Ich komm aber nicht weiter. Das x fällt bei nämlich weg.

        
Bezug
Einsetzungsverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Mo 04.11.2013
Autor: Gonozal_IX

Hiho,

auch wenn du das etwas unsauber aufgeschrieben hast, ist dein bisheriges Vorgehen korrekt.

Wenn du das weiter zusammenfasst, bleibt dann da welche Gleichung stehen?
Was bedeutet das für das Gleichungssystem?

Gruß,
Gono.

Bezug
                
Bezug
Einsetzungsverfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Mo 04.11.2013
Autor: Lou99

2x-2x+1=15

Bezug
                        
Bezug
Einsetzungsverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mo 04.11.2013
Autor: Lou99

2x fällt aber weg

Bezug
                                
Bezug
Einsetzungsverfahren: falsche Aussage
Status: (Antwort) fertig Status 
Datum: 16:15 Mo 04.11.2013
Autor: Roadrunner

Hallo Lou!


[ok] Völlig korrekt. Es ensteht also eine falsche Aussage mit $1 \ = \ 15$ .

Was sagt uns das über das Gleichungssystem bzw. die entsprechende Lösungsmenge?


Gruß vom
Roadrunner

Bezug
                                        
Bezug
Einsetzungsverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mo 04.11.2013
Autor: Lou99

Dann würde das doch die Leere Menge also L={} ergeben. Ist das ganze dann schon fertig? Ich kann y ja nicht berechnen, wenn ich x nicht habe, oder?

Bezug
                                                
Bezug
Einsetzungsverfahren: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 16:20 Mo 04.11.2013
Autor: Roadrunner

Hallo Lou!


> Dann würde das doch die Leere Menge also L={} ergeben.

[daumenhoch] !!


> Ist das ganze dann schon fertig?

Yep.


> Ich kann y ja nicht berechnen, wenn ich x nicht habe, oder?

Yep. Es gibt keine Zahlenpaare $(x,y)_$ , welche beide Gleichungen erfüllen.


Gruß vom
Roadrunner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]