www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Einsetzungshomomorphismus
Einsetzungshomomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einsetzungshomomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Di 09.09.2014
Autor: Natscha89

Aufgabe
Seien a, b [mm] \in \IZ [/mm]
Sei
[mm] \nu [/mm] : [mm] \IZ[/mm] [t] [mm] \to \IZ/a\IZ [/mm]
die Verknüpfung des Einsetzhomomorphismus [mm] \mu_{b}:\IZ[/mm] [t][mm] \to\IZ, [/mm]  f [mm] \to [/mm] f(b) mit dem kanonischen
Epimorphismus [mm] \pi_{a} [/mm] : [mm] \IZ \to \IZ/a\IZ, [/mm] x [mm] \to [/mm] x + [mm] a\IZ. [/mm]

Als Verknüpfung von Epimorphismen ist   selbst ein Epimorphismus.
a) Zeigen Sie:
[mm] ker(\nu [/mm] ) = [mm] a\IZ[/mm] [t] + (t - [mm] b)\IZ[/mm] [t]


Sie dürfen ohne Beweis verwenden: Für jedes f [mm] \in \IZ[/mm] [t] gibt es g [mm] \in \IZ[/mm] [t] mit f =
f(b) + (t - b)g (dies folgt durch Division mit Rest von f durch t - b und Einsetzen
von b).

Hallo!
Zunächst einmal entschuldige ich mich für die Schreibweise der Aufgabenstellung, aber ich habe es nicht besser hinbekommen.

So nun zu der Aufgabe:
Ich weiß nicht genau, was ich hier tun soll. Ich weiß wohl, dass ein Epimorhismus ein surjektiver Homomorphismus ist. Außerdem bildet ja der der Kern auf die Null ab aber wie setze ich hier an?
Kann mir da jemand helfen?

Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Einsetzungshomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Di 09.09.2014
Autor: hippias

Zu zeigen ist eine Mengengleichheit, also dass die linke Menge in der rechten enthalten ist und umgekehrt.

Fange doch damit an zu zeigen, dass [mm] $a\IZ[/mm] [t] + (t -  [mm] b)\IZ[/mm] [t]$ im Kern liegt. Dazu sei [mm] $p\in a\IZ[/mm]  [t] + (t -  [mm] b)\IZ[/mm]  [t]$ beliebig. Nach Definition existieren [mm] $f,g\in \IZ[/mm] [t]$ so, dass $p= af+(t-b)g$. Ueberlege Dir nun, was Du fuer [mm] $p^{\mu_{b}}$ [/mm] erhaelst, und dann nocheinmal, dass [mm] $\pi_{a}$ [/mm] das Ergebnis auf die Null (in [mm] $\IZ/a\IZ$) [/mm] abbildet.

Erst fuer die Umkehrung wirst Du den Hinweis brauchen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]