www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Einschränkung auf Gerade
Einschränkung auf Gerade < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einschränkung auf Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 Di 01.12.2009
Autor: Bleistiftkauer

Aufgabe
Sei f: [mm] \IR^{2} \to \IR [/mm] mit f(x,y) = ( y - [mm] x^{2} [/mm] ) (y - [mm] 2x^{2}). [/mm]

Wie sähe eine Einschränkung von f auf eine beliebige Gerade durch den Nullpunkt aus?

        
Bezug
Einschränkung auf Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Di 01.12.2009
Autor: XPatrickX

Hallo,

Um den Graph auf einer Ursprungsgerade zu betrachten, kannst du doch y=tx setzen.

Gruß Patrick

Bezug
        
Bezug
Einschränkung auf Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Di 01.12.2009
Autor: fred97

Ergänzend zu Patrick:

Betrachten mußt Du auch noch die Gerade x=0.

Die Einschränkung von f auf diese gerade ist dann: f(0,y) = [mm] y^2 [/mm]

FRED

Bezug
                
Bezug
Einschränkung auf Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:58 Mi 02.12.2009
Autor: Bleistiftkauer

das verwirrt mich grad etwas.

also wie genau sieht die einschränkung auf eine gerade aus?

f(x,y) = [mm] y^{2} [/mm]

oder wie?

Bezug
                        
Bezug
Einschränkung auf Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Mi 02.12.2009
Autor: angela.h.b.


> das verwirrt mich grad etwas.
>  
> also wie genau sieht die einschränkung auf eine gerade
> aus?

Hallo,

wenn Du nur die Punkte berachtest, die auf der Geraden y=tx liegen,

dann wird aus f(x,y) = ( y - $ [mm] x^{2} [/mm] $ ) (y - $ [mm] 2x^{2}). [/mm] $

[mm] f_1(x) [/mm] = ( tx - $ [mm] x^{2} [/mm] $ ) (tx - $ [mm] 2x^{2}). [/mm]

Für die Gerade x=0 entsprechend - das hat Fred ja schon vorgemacht.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]