www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Einheitswurzeln
Einheitswurzeln < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitswurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Sa 17.01.2009
Autor: Soonic

Aufgabe
Bestimmen Sie alle primitiven (komplexen) sechsten Wurzeln der
Eins.

Was kann man sich überhaupt unter einer primitiven Wurzel vorstellen?

Und wie stelle ich fest, welche Wurzeln gerade sind, da die sechste Wurzel ja eine gerade Wurzel ist, sowie die dritte Wurzel auch ....


Vielen Dank im Vorraus


soonic

        
Bezug
Einheitswurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Sa 17.01.2009
Autor: Al-Chwarizmi


> Bestimmen Sie alle primitiven (komplexen) sechsten Wurzeln
> der Eins.
>  Was kann man sich überhaupt unter einer primitiven Wurzel
> vorstellen?

wurde das nicht definiert ?
  

> Und wie stelle ich fest, welche Wurzeln gerade sind, da die
> sechste Wurzel ja eine gerade Wurzel ist, sowie die dritte
> Wurzel auch ....
>  
> Vielen Dank im Vorraus

dieses "im Vorraus" habe ich jetzt im MatheRaum
schon so oft angetroffen - aber meines Wissens
heisst es immer noch "im Voraus"
  

> soonic


hallo soonic,

zuerst habe ich gedacht, dass der Ausdruck "primitive
Wurzel" bei den komplexen Einheitswurzeln in [mm] \IC [/mm] gar
keinen Sinn macht, denn normalerweise ist dieser
Begriff in der Zahlentheorie (der ganzen Zahlen)
beheimatet.

Im entsprechenden Wiki-Artikel fand ich aber über
"Einheitswurzeln in Körpern":

Enthält K die n-ten Einheitswurzeln, so ist eine
Einheitswurzel genau dann primitiv, wenn sie
die Gruppe der n-ten Einheitswurzeln erzeugt.
Die primitiven n-ten Einheitswurzeln sind genau
die Nullstellen des n-ten Kreisteilungspolynoms.

Für den Fall n=6 wären also die primitiven
Einheitswurzeln die Zahlen w und [mm] w^5, [/mm] wobei
[mm] w=e^{i*\pi/3} [/mm]

LG

Bezug
                
Bezug
Einheitswurzeln: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 09.02.2009
Autor: dliang

Primitiv sind die Wurzeln, bei denen k und 6 treilfreund sind, also k=1 oder 5
folgt
k=e^(i*1*pi/3)
k=e^(i*5*pi/3)

Bezug
                        
Bezug
Einheitswurzeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 Mo 09.02.2009
Autor: Al-Chwarizmi


> Primitiv sind die Wurzeln, bei denen k und 6 treilfreund
> sind, also k=1 oder 5
>  folgt
>  k=e^(i*1*pi/3)
>  k=e^(i*5*pi/3)


Hallo dliang,

mir ist nicht ganz klar, was die Überschrift "Korrektur"
bedeuten soll. Ich hatte doch die beiden Lösungen

      $\ w$ und [mm] w^5, [/mm] wobei [mm] w=e^{i*\pi/3} [/mm]

schon angegeben. Zu korrigieren wäre bei deiner
Antwort, dass die Wurzeln nicht mit k bezeichnet
werden sollten (das ist ihr Index), sondern z.B.
mit [mm] z_k, [/mm] also [mm] z_1 [/mm] und [mm] z_5. [/mm]

Gruß    Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]