www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Einheitsvektoren, Nullvektor..
Einheitsvektoren, Nullvektor.. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitsvektoren, Nullvektor..: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:25 Mo 07.07.2008
Autor: Tully

Aufgabe
F: [mm] \IR³ \to \IR³ [/mm] mit [mm] F(\vec{x} [/mm] :=  A * [mm] \vec{x} [/mm] + [mm] \vec{b} [/mm] und

[mm] \pmat{ -1 & 0 & 0 \\ 0 & 0 & 1\\ 0 & 1 & 0} [/mm] und [mm] \vec{b} [/mm] = [mm] \pmat{1 \\ 0 \\ 0} [/mm]

wird eine Abbildung  vom Anschauuungsraum [mm] \IR³ [/mm] in sich beschrieben.

1. Auf welche Vektoren werden die Einheitsvektoren [mm] \vec{e1}, \vec{e2} [/mm] und [mm] \vec{e3} [/mm] abgebildet?

2. Welcher Vektor wird auf den Nullvektor abgebildet?

3. Bestimmen Sie die inverse Matrix zu A. Interpretieren sie das ergebnis.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Ich habe Probleme bei Punk 1. und Punkt 2. Kann mir jemand evt. kurz erläutern, wie man bei diesen Aufgaben prizipiell vorgeht?

Zu Aufgabe 3. Die inverse Matrix entsprich ja der Ausgangsmatrix. Wie kann man dies Interpretieren? Also was bedeutet es allgemein, wenn die Ausgangsmatrix der Inversen entspricht?

Vielen Dank für Eure Hilfe!! :)

Tully

        
Bezug
Einheitsvektoren, Nullvektor..: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Mo 07.07.2008
Autor: koepper

Hallo Tully,

zu 1.) setze die 3 Einheitsvektoren einfach für x in die Funktion ein und rechne aus.

zu 2.) setze den Nullvektor für F(x) ein und löse nach x auf.

zu 3.) z.B. könnte man sagen, daß ein Vektor, der zweimal hintereinander (nur!) mit der Matrix abgebildet wird, wieder auf sich selbst fällt. Der Verschiebungsvektor sorgt hier aber für Störung. Die Matrix ist weiterhin orthogonal.
Versuche vielleicht auch, die Abbildung geometrisch zu interpretieren.

LG
Will


Bezug
                
Bezug
Einheitsvektoren, Nullvektor..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 Mo 07.07.2008
Autor: Tully

Danke.
Also theoretisch so:

1.
[mm] \vec{e1} [/mm] = [mm] \pmat{1 \\ 0 \\ 0} [/mm]

[mm] \pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 } [/mm] * [mm] \pmat{ 1 \\ 0 \\ 0} [/mm] + [mm] \pmat{1 \\ 0 \\ 0} [/mm] = [mm] \pmat{ 0 \\ 0 \\ 0} [/mm] ?


[mm] \vec{e2} [/mm] = [mm] \pmat{0 \\ 1 \\ 0} [/mm]

[mm] \pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 } [/mm] * [mm] \pmat{ 0 \\ 1 \\ 0} [/mm] + [mm] \pmat{1 \\ 0 \\ 0} [/mm] = [mm] \pmat{ 1 \\ 1 \\ 0} [/mm] ?

usw.

Ist dies korrekt?

Guter Tipp mit der geometrischen Betrachtung. Hat mir geholfen! :)

Bezug
                        
Bezug
Einheitsvektoren, Nullvektor..: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mo 07.07.2008
Autor: schachuzipus

Hallo Tully,

> Danke.
> Also theoretisch so:
>  
> 1.
>  [mm]\vec{e1}[/mm] = [mm]\pmat{1 \\ 0 \\ 0}[/mm]
>  
> [mm]\pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 }[/mm] * [mm]\pmat{ 1 \\ 0 \\ 0}[/mm] + [mm]\pmat{1 \\ 0 \\ 0}[/mm] = [mm]\pmat{ 0 \\ 0 \\ 0}[/mm] ? [ok]
>
>
> [mm]\vec{e2}[/mm] = [mm]\pmat{0 \\ 1 \\ 0}[/mm]
>  
> [mm]\pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 }[/mm] * [mm]\pmat{ 0 \\ 1 \\ 0}[/mm] + [mm]\pmat{1 \\ 0 \\ 0}[/mm] = [mm]\pmat{ 1 \\ 1 \\ 0}[/mm] ? [notok]

Da haste dich verrechnet (oder eher verschrieben), es ist doch [mm] $A\cdot{}e_2=\vektor{0\\0\\1}$, [/mm] also ...

>
> usw.
>  
> Ist dies korrekt?

>  
> Guter Tipp mit der geometrischen Betrachtung. Hat mir
> geholfen! :)

LG

schachuzipus


Bezug
                                
Bezug
Einheitsvektoren, Nullvektor..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:45 Mo 07.07.2008
Autor: Tully

mh? der rechenweg sie doch wie folgt aus:

[mm] \pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 } [/mm]  * [mm] \pmat{ 0 \\ 1 \\ 0} [/mm]  = [mm] \pmat{0 \\ 1 \\ 0} [/mm] und das dann +  [mm] \pmat{1 \\ 0 \\ 0} [/mm]  =  [mm] \pmat{ 1 \\ 1 \\ 0} [/mm] ?

Bezug
                                        
Bezug
Einheitsvektoren, Nullvektor..: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Mo 07.07.2008
Autor: schachuzipus

Hi,

> mh? der rechenweg sie doch wie folgt aus:
>  
> [mm]\pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 }[/mm]  * [mm]\pmat{ 0 \\ 1 \\ 0}[/mm]  = [mm]\pmat{0 \\ 1 \\ 0}[/mm] [notok]

M.E. kommt da [mm] $\vektor{0\\0\\1}$ [/mm] raus

> und das dann +  [mm]\pmat{1 \\ 0 \\ 0}[/mm]  =
>  [mm]\pmat{ 1 \\ 1 \\ 0}[/mm] ?


Das Vorgehen ist ja richtig, aber ich meine, das erste Produkt stimmt bei dir nicht


LG

schachuzipus

Bezug
                                        
Bezug
Einheitsvektoren, Nullvektor..: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:09 Di 08.07.2008
Autor: Tully

Oh je, ja, natürlich! Danke ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]