www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Einfache Lagrange Interpolatin
Einfache Lagrange Interpolatin < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einfache Lagrange Interpolatin: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Fr 21.03.2014
Autor: thissideup

Aufgabe
keine Aufgabe, nur Frage

Mir ist gerade aufgefallen, dass die Lagrange Interpolation (im Restklassenring n) zwar relativ einfach ist, jedoch während einer Klausur (und darum geht es mir gerade) relativ wenig bringt.

Wenn ich meine Aufzeichnungen und Bücher richtig verstehe, dann kann ich in einem Restklassenring folgender Weise mein x Interpolieren:

[mm] $\sum\limits_{i=1}^k y_i\cdot \prod\limits_{1\leq m\leq k \vee m\neq j}^k (x-x_m)(x_j-x_m)^{-1} \bmod [/mm] n$

Was bedeutet, dass ich immerwieder das multiplikativ Inverse mod n berechnen müsste, für jeden Faktor jedes einzelnen Polynoms. Das ist natürlich in einer Klausur recht zeitintensiv.

Daher die Frage: Gibt es eine einfachere/schnellere Methode die Lagrange Interpolation mod n durchzuführen? Bzw. (noch besser) eine schnellere Methode (per Hand) das multiplikativ Inverse mod n zu berechnen?

Danke und liebe Grüße!
alex.

        
Bezug
Einfache Lagrange Interpolatin: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Fr 21.03.2014
Autor: felixf

Moin,

> keine Aufgabe, nur Frage
>  Mir ist gerade aufgefallen, dass die Lagrange
> Interpolation (im Restklassenring n) zwar relativ einfach
> ist, jedoch während einer Klausur (und darum geht es mir
> gerade) relativ wenig bringt.
>
> Wenn ich meine Aufzeichnungen und Bücher richtig verstehe,
> dann kann ich in einem Restklassenring folgender Weise mein
> x Interpolieren:
>  
> [mm]\sum\limits_{i=1}^k y_i\cdot \prod\limits_{1\leq m\leq k \vee m\neq j}^k (x-x_m)(x_j-x_m)^{-1} \bmod n[/mm]
>  
> Was bedeutet, dass ich immerwieder das multiplikativ
> Inverse mod n berechnen müsste, für jeden Faktor jedes
> einzelnen Polynoms. Das ist natürlich in einer Klausur
> recht zeitintensiv.
>
> Daher die Frage: Gibt es eine einfachere/schnellere Methode
> die Lagrange Interpolation mod n durchzuführen? Bzw. (noch
> besser) eine schnellere Methode (per Hand) das
> multiplikativ Inverse mod n zu berechnen?

nun, du kannst das ganze als lineares Gleichungssystem schreiben und dieses mit dem Gauss-Verfahren loesen. Dabei musst du allerdings auch modulo $n$ invertieren, wenn du es ganz klassisch machst, allerdings gibt's auch eine "divisionsfreie" Variante, bei der du bis zum Schluss rechnen kannst und dann nur die Pivotelemente invertieren musst.

Beim von Hand rechnen, gerade bei kleinen/einfachen Beispielen, ist das mit dem Gleichungssystem meist einfacher als per Lagrange. Vom asymptotischen Aufwand ist beides jedoch im Wesentlichen das gleiche (es sei denn man verwendet schnelle Multiplikation oder aehnliches, aber das lohnt sich nur bei sehr grossen Faellen, also nichts was man in einer Klausur machen will).

LG Felix


Bezug
                
Bezug
Einfache Lagrange Interpolatin: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Fr 21.03.2014
Autor: thissideup

ah, cool. Vielen Dank schonmal!

Nur kurz zum Verständnis: meinst du mit "musst du allerdings auch modulo $ n $ invertieren" das multiplikativ Inverse? Das ist ja praktisch mein eigentliches Problem, denn das ist ja nicht schwer, nur aufwendig.

Hast du die "divisionsfreie" Variante parat?

Liebe Grüße!

Bezug
                        
Bezug
Einfache Lagrange Interpolatin: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Fr 21.03.2014
Autor: felixf

Moin,

> Nur kurz zum Verständnis: meinst du mit "musst du
> allerdings auch modulo [mm]n[/mm] invertieren" das multiplikativ
> Inverse?

genau.

> Das ist ja praktisch mein eigentliches Problem,
> denn das ist ja nicht schwer, nur aufwendig.

Ja, das ist nicht ganz ohne :-) Mit dem euklidischen Algorithmus geht das noch ganz gut, aber ist halt auch muehsam.

Bei ganz kleinen Werten von $n$ bietet es sich an, vorm Rechnen eine Tabelle mit allen Inversen aufzustellen. Das geht meist recht effizient, wenn man alle Potenzen von 2 berechnet (und dann von 3, 5, ..., je nachdem ob noch nicht alles abgegrast ist); sobald man eine Potenz hat, die 1 ergibt, hat man das Inverse von 2 und von allen Potenzen von 2 (mit ein wenig Indexabzaehlerei).

In einer Klausur wird entweder $n$ klein sein oder du musst nur sehr selten invertieren. Oder du darfst Taschenrechner/Computer/... verwenden, mit dem das schneller geht.

> Hast du die "divisionsfreie" Variante parat?

Wenn du etwa die Gleichungen $3 x + 6 y$ und $4 x + 7 y$ hast, kannst du die zweite Gleichung mit 3 multiplizieren und dann 4-mal die erste davon abziehen. Dann hast du aus der zweiten Gleichung $x$ eliminiert, ohne geteilt zu haben.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]