Eindeutiger Fixpunkt < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:04 Mo 05.05.2008 | Autor: | vicky |
Aufgabe | Betrachten Sie die Familie von Abbildungen [mm] f_\lambda:[-1,1] \to [/mm] [-1,1]:
[mm] x\mapsto [/mm] 1- [mm] \lambda x^2 [/mm] für [mm] \lambda \in [/mm] [0,2].
Zeigen Sie, für alle [mm] \lambda \in [/mm] [0,2) gibt es einen eindeutigen Fixpunkt [mm] \overline{x}(\lambda). [/mm] |
Hallo,
habe mir folgende Überlegungen dazu gemacht. Es sind zwei Teile zu zeigen. Naja eigentlich nur noch einer. Die Abbildung ist bereits selbstabbildend, was aus der Aufgabenstellung bereits hervorgeht. Nun ist noch zu zeigen, dass diese stark kontrahierend ist.
Die Abb. [mm] f_\lambda [/mm] heißt stark kontrahierend, wenn es ein [mm] \alpha \in [/mm] [0,1) gibt mit x,y [mm] \in [/mm] [-1,1], so dass [mm] d(f_\lambda [/mm] x, [mm] f_\lambda [/mm] y) [mm] \le \alpha [/mm] d(x,y). (d sei Metrik)
Wie kann ich nun am besten vorgehen, um die Kontraktionseigenschaft zu zeigen? In wie weit beeinflusst mich da [mm] \lambda?
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:27 Mo 05.05.2008 | Autor: | Marcel |
Hallo,
> Betrachten Sie die Familie von Abbildungen [mm]f_\lambda:[-1,1] \to[/mm]
> [-1,1]:
> [mm]x\mapsto[/mm] 1- [mm]\lambda x^2[/mm] für [mm]\lambda \in[/mm] [0,2].
> Zeigen Sie, für alle [mm]\lambda \in[/mm] [0,2) gibt es einen
> eindeutigen Fixpunkt [mm]\overline{x}(\lambda).[/mm]
> Hallo,
>
> habe mir folgende Überlegungen dazu gemacht. Es sind zwei
> Teile zu zeigen. Naja eigentlich nur noch einer. Die
> Abbildung ist bereits selbstabbildend, was aus der
> Aufgabenstellung bereits hervorgeht. Nun ist noch zu
> zeigen, dass diese stark kontrahierend ist.
> Die Abb. [mm]f_\lambda[/mm] heißt stark kontrahierend, wenn es ein
> [mm]\alpha \in[/mm] [0,1) gibt mit x,y [mm]\in[/mm] [-1,1], so dass
> [mm]d(f_\lambda[/mm] x, [mm]f_\lambda[/mm] y) [mm]\le \alpha[/mm] d(x,y). (d sei
> Metrik)
> Wie kann ich nun am besten vorgehen, um die
> Kontraktionseigenschaft zu zeigen? In wie weit beeinflusst
> mich da [mm]\lambda?[/mm]
in ziemlich trivialer Weise ist [mm] $f_\lambda\,'(x)=-2 \lambda*x$ [/mm] auf [mm] $\black{[-1,1]}$. [/mm] Sind $x,y [mm] \in [/mm] [-1,1]$ und ist [mm] $m=m(x,y):=\min\{x,y\}$ [/mm] und [mm] $M=M(x,y):=\max\{x,y\}$, [/mm] so setze
[mm] $\black{I=I(x,y)=[m,M]}$
[/mm]
Nun beachte, dass es nach dem Mittelwertsatz ein [mm] $\xi=\xi(x,y) \in [/mm] I$ so gibt, dass
[mm] $\frac{f(y)-f(x)}{y-x}=-2*\lambda*\xi$
[/mm]
Damit bekäme man dann eine Aussage für [mm] $\lambda \in \left[0,\frac{1}{2}\right)$ [/mm] (bilde den Betrag auf beiden Seiten, danach benutze rechterhand noch [mm] $\sup\{\xi: \xi \in (-1,1)\}=1$) [/mm] mit dem Banachschen Fixpunktsatz, und danach müsste man sich dann etwas für [mm] $\lambda \in \left[\frac{1}{2},2\right)$ [/mm] überlegen.
Es geht hier aber einfacher:
Beweise, dass die auf [mm] $\IR$ [/mm] definierte Funktion (wenn man [mm] $f_\lambda(x)=1-\lambda x^2$ [/mm] auf [mm] $\IR$ [/mm] definiert betrachtet):
[mm] $g(x)=g_\lambda(x)=f_\lambda(x)-x=1-\lambda x^2-x$ [/mm] genau eine Nullstelle in $[-1,1]$ hat, wenn $0 [mm] \le \lambda [/mm] < 2$ .
Für [mm] $\lambda=0$ [/mm] ist das trivial (einzige Nullstelle von [mm] $g=g_0$ [/mm] ist dann $x=1 [mm] \in [/mm] [-1,1]$).
Für $0 < [mm] \lambda [/mm] < 2$ kannst Du mit stückweiser strenger Monotonie (unter Benutzung der Differentialrechnung) und Stetigkeitsargumenten von [mm] $g_\lambda$ [/mm] arbeiten, ggf. mit dem Zwischenwertsatz die Existenz einer Nullstelle begründen und deren Eindeutigkeit folgt dann aus der (stückweisen) strengen Monotonie, weil das die (stückweise) Injektivität beinhaltet.
Was Du aber auch machen kannst:
Setze einfach
[mm] $1-\lambda x^2-x=0$
[/mm]
bzw. betrachte die dazu äquivalente Gleichung:
[mm] $x^2+\frac{x}{\lambda}+\frac{-1}{\lambda}=0$
[/mm]
Diese kannst Du dann mit der p-q-Formel lösen und zeigen, dass diese genau eine Lösung hat, die in $[-1,1]$ liegt (die quadr. Gleichung hat ja eigentlich zwei Lösungen, daher ist es wichtig, sich klarzumachen, dass immer eine und nur eine davon in $[-1,1]$ liegt).
Da muss man halt ein wenig nach geeigneten Abschätzungen suchen...
Gruß,
Marcel
|
|
|
|