www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Eigenwerte von Endomorphismen
Eigenwerte von Endomorphismen < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte von Endomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Do 29.06.2006
Autor: curk

Aufgabe
Von den Eigenwerten bestimmter Endomorphismen

Es sei V ein n-dimensionaler [mm] \IR-Vektorraum [/mm] und F,G [mm] \in [/mm] End(V). Es gelte [mm] F^n [/mm] = 0, dim(ker F) = 1 und G [mm] \circ [/mm] F - F [mm] \circ [/mm] G = F.
Zeigen Sie, dass es dann ein a [mm] \in \IR [/mm] gibt, so dass a, [mm] a-1,\ldots,a-(n-1) [/mm] Eigenwerte von G sind. Folgern Sie, dass G diagonalisierbar ist.
[Tipp: Man zeige, dass es ein v [mm] \in [/mm] V gibt, für das [mm] v,Fv,F^2V,\ldots,F^{n-1}v\not=0 [/mm] gilt.]

So, der Tipp is ja recht einfach zu zeigen; da (der Kern) Ker F [mm] \subseteq \ldots \subseteq [/mm] Ker [mm] F^n [/mm] gilt und insbesondere dim Ker [mm] F^{n-1} [/mm] = n-1, wähle ich v [mm] \in \overline{Ker F^{n-1}} [/mm] und die Bedingung [mm] v,Fv,F^2V,\ldots,F^{n-1}v\not=0 [/mm] ist erfüllt.

Nun weiß ich alelrdings nicht weiter. Wenn ich jetzt annehme, dass ich einen Vektor v zum Eigenwert a von G gefunden hätte und  G [mm] \circ [/mm] F - F [mm] \circ [/mm] G = F betrachte erhalte ich  G(F(v) - F(G(v)) = aF(v) - F(av) = 0 = F(v). Das riecht mir natürlich nach einer falschen Schlussfolgerung ;) Das würde ja heißen, dass der Eigenraum zum Eigenwert a der Kern von F ist, und zwar für einen beliebigen Eigenwert a :S

Kann mir jemand sagen was an der letzten Überlegung falsch ist?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke schonmal,

Jonas


        
Bezug
Eigenwerte von Endomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Do 29.06.2006
Autor: piet.t

Hallo Jonas,

das ganze ist denke ich vor allem ein Problem der Schreibweise.
Du schreibst:

> [...] und  G [mm]\circ[/mm] F - F [mm]\circ[/mm] G = F betrachte
> erhalte ich  G(F(v) - F(G(v)) = aF(v) - F(av) = 0 = F(v).

So wie ich das lesen würde bindet [mm] \circ [/mm] stärker als + (bzw. -), es ist also [mm](G\circ F) - (F \circ G) = F [/mm]

Damit ist dann
[mm]G(F(v))-F(G(v)) = F(v) [/mm]
[mm] \Rightarrow G(F(v)) - F(av) = F(v)[/mm]
[mm] \Rightarrow G(F(v)) = F(v) + F(av) = F(v) + aF(v) = (a+1) F(v)[/mm]
...und der Rest müsste dann wieder von alleine gehen (ich hab glaube ich sowieso schon zuviel geschrieben)!

Gruß

piet


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]