www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte und Matrix
Eigenwerte und Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:53 Mi 20.06.2018
Autor: sancho1980

Aufgabe
Sei A = [mm] (a_{jk}) [/mm] eine beliebige (2,2)-Matrix mit Eigenwerten [mm] \lambda_{1}, \lambda_{2}. [/mm] Zeigen Sie: [mm] a_{11} [/mm] + [mm] a_{22} [/mm] =  [mm] \lambda_{1} [/mm] +  [mm] \lambda_{2} [/mm] und [mm] (a_{11} [/mm] - [mm] a_{22})^2 [/mm] + 4 [mm] a_{12}a_{21} [/mm] = [mm] (\lambda_{1} [/mm] - [mm] \lambda_{2})^2 [/mm]

Hallo

versuche mich an obiger Aufgabe.
Den ersten Teil habe ich soweit fertig. Bin mir aber nicht sicher, ob das so zulässig ist:

[mm] (a_{11} [/mm] -  [mm] \lambda)(a_{22} [/mm] -  [mm] \lambda) [/mm] - [mm] a_{12}a_{21} [/mm] = [mm] (\lambda_1 [/mm] - [mm] \lambda) (\lambda_2 [/mm] - [mm] \lambda) [/mm]
[mm] \lambda [/mm] - [mm] (a_{11} [/mm] + [mm] a_{22}) [/mm] + [mm] \bruch{a_{11}a_{22} - a_{12}a_{21}}{\lambda} [/mm] = [mm] \lambda [/mm] - [mm] (\lambda_{1} [/mm] + [mm] \lambda_{2}) [/mm] + [mm] \bruch{\lambda_{1} \lambda_{2}}{\lambda} [/mm]
[mm] (a_{11} [/mm] + [mm] a_{22}) [/mm] - 0 = [mm] (\lambda_{1} [/mm] + [mm] \lambda_{2}) [/mm] - 0

Beim zweiten Teil der Aufgabe weiß ich leider nicht so richtig, wie ich auf die gewünschte Form komme! Kann mir einer weiterhelfen?

Gruß und Danke,

Martin

        
Bezug
Eigenwerte und Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Do 21.06.2018
Autor: fred97


> Sei A = [mm](a_{jk})[/mm] eine beliebige (2,2)-Matrix mit
> Eigenwerten [mm]\lambda_{1}, \lambda_{2}.[/mm] Zeigen Sie: [mm]a_{11}[/mm] +
> [mm]a_{22}[/mm] =  [mm]\lambda_{1}[/mm] +  [mm]\lambda_{2}[/mm] und [mm](a_{11}[/mm] -
> [mm]a_{22})^2[/mm] + 4 [mm]a_{12}a_{21}[/mm] = [mm](\lambda_{1}[/mm] - [mm]\lambda_{2})^2[/mm]
>  Hallo
>  
> versuche mich an obiger Aufgabe.
>  Den ersten Teil habe ich soweit fertig. Bin mir aber nicht
> sicher, ob das so zulässig ist:
>  
> [mm](a_{11}[/mm] -  [mm]\lambda)(a_{22}[/mm] -  [mm]\lambda)[/mm] - [mm]a_{12}a_{21}[/mm] =
> [mm](\lambda_1[/mm] - [mm]\lambda) (\lambda_2[/mm] - [mm]\lambda)[/mm]
>  [mm]\lambda[/mm] - [mm](a_{11}[/mm] + [mm]a_{22})[/mm] + [mm]\bruch{a_{11}a_{22} - a_{12}a_{21}}{\lambda}[/mm]
> = [mm]\lambda[/mm] - [mm](\lambda_{1}[/mm] + [mm]\lambda_{2})[/mm] +
> [mm]\bruch{\lambda_{1} \lambda_{2}}{\lambda}[/mm]

Das ist ein großes Durcheinander mit [mm] \lambda_1, \lambda_2 [/mm] und [mm] \lambda. [/mm] Für mich ist das nicht so richtig nachvollziehbar. Desweiteren teilst Du durch [mm] \lambda [/mm] , das geht nur wenn es  [mm] \ne [/mm] 0 ist.


> - 0 = [mm](\lambda_{1}[/mm] + [mm]\lambda_{2})[/mm] - 0
>  
> Beim zweiten Teil der Aufgabe weiß ich leider nicht so
> richtig, wie ich auf die gewünschte Form komme! Kann mir
> einer weiterhelfen?
>  
> Gruß und Danke,
>  
> Martin


Sei [mm] $p(\lambda)=\lambda^2 [/mm] +a [mm] \lambda [/mm] +b$  das char Polynom von A.

Dann ist (zeige dies !)

[mm] a=-(a_{11}+a_{22}) [/mm] und [mm] b=a_{11}a_{22}-a_{12}a_{21} [/mm] = [mm] \det(A). [/mm]


Nun bemühe die Auflösungsformel für quadratische Gleichungen. Damit bekommst Du locker

$ [mm] a_{11} [/mm]  +  [mm] a_{22} [/mm]  =  [mm] \lambda_{1} [/mm] + [mm] \lambda_{2} [/mm] $

Die zweite Gleichung bekommst Du ebenso mit dieser Auflösungsformel:

Berechne [mm] \lambda_1- \lambda_2, [/mm] quadriere und rechne !

Bezug
                
Bezug
Eigenwerte und Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:21 Fr 22.06.2018
Autor: sancho1980

Danke! Da hab ich es mir ja unnötig schwer gemacht...
Aber zur Erklärung meiner Rechnung: Ich habe das charakteristische Polynom auf der einen Seite als Determinante von A - [mm] \lambda [/mm] I angeschrieben und auf der anderen Seite als [mm] (\lambda_1 [/mm] - [mm] \lambda) (\lambda_2 [/mm] - [mm] \lambda). [/mm] Dann auf beiden Seiten durch [mm] \lambda [/mm] geteilt und [mm] {\lambda}^2 [/mm] subtrahiert. Da auf auf beiden Seiten [mm] \bruch{c}{\lambda} [/mm] Nullfolgen sind, gilt [mm] a_{11} [/mm] + [mm] a_{22} [/mm] = [mm] {\lambda}_{1} [/mm] + [mm] {\lambda}_{2} [/mm]
Ergibt das für dich Sinn?

Bezug
                        
Bezug
Eigenwerte und Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Fr 22.06.2018
Autor: fred97


> Danke! Da hab ich es mir ja unnötig schwer gemacht...
>  Aber zur Erklärung meiner Rechnung: Ich habe das
> charakteristische Polynom auf der einen Seite als
> Determinante von A - [mm]\lambda[/mm] I angeschrieben und auf der
> anderen Seite als [mm](\lambda_1[/mm] - [mm]\lambda) (\lambda_2[/mm] -
> [mm]\lambda).[/mm] Dann auf beiden Seiten durch [mm]\lambda[/mm] geteilt und
> [mm]{\lambda}^2[/mm] subtrahiert. Da auf auf beiden Seiten
> [mm]\bruch{c}{\lambda}[/mm] Nullfolgen sind, gilt [mm]a_{11}[/mm] + [mm]a_{22}[/mm] =
> [mm]{\lambda}_{1}[/mm] + [mm]{\lambda}_{2}[/mm]
>  Ergibt das für dich Sinn?

Nein ! Teilen durch [mm] \lanbda [/mm] geht nur wenn [mm] \lambda \ne [/mm] 0 ist.

Was meinst Du denn mit " [mm]\bruch{c}{\lambda}[/mm] Nullfolge" ????


Bezug
                                
Bezug
Eigenwerte und Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Fr 22.06.2018
Autor: sancho1980

Nullfolge war vielleicht der falsche Begriff.
Was ich sagen will: Das charakteristische Polynom einer Matrix ist letzten Endes doch eine Funktion [mm] f(\lambda). [/mm] Ich kann dieses Polynom einerseits anschreiben als

[mm] (a_{11} [/mm] - [mm] \lambda)(a_{22} [/mm] - [mm] \lambda) [/mm] - [mm] a_{12} a_{21} [/mm]

und andererseits als

[mm] ({\lambda}_1 [/mm] - [mm] \lambda) ({\lambda}_2 [/mm] - [mm] \lambda) [/mm]

Ich starte also mit der Gleichung

[mm] (a_{11} [/mm] - [mm] \lambda)(a_{22} [/mm] - [mm] \lambda) [/mm] - [mm] a_{12} a_{21} [/mm] = [mm] ({\lambda}_1 [/mm] - [mm] \lambda) ({\lambda}_2 [/mm] - [mm] \lambda) [/mm]

und stelle um zu:

[mm] a_{11} [/mm] + [mm] a_{22} [/mm] - [mm] \bruch{a_{11} a_{22} - a_{12} a_{21}}{\lambda} [/mm] = [mm] {\lambda}_{1} [/mm] + [mm] {\lambda}_{2} -\bruch{{\lambda}_{1} {\lambda}_{2}}{\lambda} [/mm]

Sowohl [mm] a_{11} a_{22} [/mm] - [mm] a_{12} a_{21} [/mm] als auch [mm] {\lambda}_{1} {\lambda}_{2} [/mm] sind von [mm] \lambda [/mm] unabhängige, also konstante Ausdrücke ("c"), und der Grenzwert jeder Funktion [mm] \bruch{c}{x} [/mm] oder eben [mm] \bruch{c}{\lambda} [/mm] ist 0.

Daher nur meine Frage, ob es zulässig ist, die qua Aufgabe zu zeigende Relation

[mm] a_{11} [/mm] + [mm] a_{22} [/mm] = [mm] {\lambda}_{1} [/mm] + [mm] {\lambda}_{2} [/mm]

aus der umgestellten Gleichung zu schlussfolgern.

Bezug
                                        
Bezug
Eigenwerte und Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:09 Sa 23.06.2018
Autor: angela.h.b.


Moin!

> Ich starte also mit der Gleichung

>

> [mm](a_{11}[/mm] - [mm]\lambda)(a_{22}[/mm] - [mm]\lambda)[/mm] - [mm]a_{12} a_{21}[/mm] =
> [mm]({\lambda}_1[/mm] - [mm]\lambda) ({\lambda}_2[/mm] - [mm]\lambda)[/mm]

Jetzt mach kein Gedöns, sondern multipliziere die Klammern aus, sortiere und besinne Dich darauf, daß zwei Polynome gleich sind, wenn ihre Koeffizienten gleich sind.

So bekommst Du dann
[mm] a_{11}+a_{22}=\lambda_1+\lambda_2 [/mm]
und
[mm] a_{11}a_{22}-a_{12}a_{21}=\lambda_1\lambda_2. [/mm]

Dann kann es weitergehen.

LG Angela


>

> und stelle um zu:

>

> [mm]a_{11}[/mm] + [mm]a_{22}[/mm] - [mm]\bruch{a_{11} a_{22} - a_{12} a_{21}}{\lambda}[/mm]
> = [mm]{\lambda}_{1}[/mm] + [mm]{\lambda}_{2} -\bruch{{\lambda}_{1} {\lambda}_{2}}{\lambda}[/mm]

>

> Sowohl [mm]a_{11} a_{22}[/mm] - [mm]a_{12} a_{21}[/mm] als auch [mm]{\lambda}_{1} {\lambda}_{2}[/mm]
> sind von [mm]\lambda[/mm] unabhängige, also konstante Ausdrücke
> ("c"), und der Grenzwert jeder Funktion [mm]\bruch{c}{x}[/mm] oder
> eben [mm]\bruch{c}{\lambda}[/mm] ist 0.

>

> Daher nur meine Frage, ob es zulässig ist, die qua Aufgabe
> zu zeigende Relation

>

> [mm]a_{11}[/mm] + [mm]a_{22}[/mm] = [mm]{\lambda}_{1}[/mm] + [mm]{\lambda}_{2}[/mm]

>

> aus der umgestellten Gleichung zu schlussfolgern.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]