Eigenwerte Minimalpolynom etc. < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:02 Mo 04.05.2009 | Autor: | s.1988 |
Aufgabe | Es seien V ein endlich erzeutgter [mm] \IC [/mm] -Vektorraum, f [mm] \in Hom_{\IC}(V,V), \lambda_{1},...,\lambda_{r} \in \IC [/mm] die paarweise verschiedenen Eigenwerte von f, [mm] \chi _{f}(T)=\produkt_{i=1}^{r}(\lambda_{i}-T)^{l_{i}} [/mm] und [mm] \mu_{f}(T)=\produkt_{i=1}^{r}(T-\lambda_{i})^{k_{i}}.
[/mm]
Für i [mm] \in [/mm] {1,...,r} sei der Untervektorraum [mm] H_{i} [/mm] von V definiert durch [mm] H_{i}:=ker((f-\lambda_{i}*id_{V})^{k_{i}}.
[/mm]
Zeigen Sie:
(i) Es gilt [mm] H_{i}=q_{i}(f)(V) [/mm] mit [mm] q_{i}T:=\produkt_{j=1;j\not=i}^{r}(T-\lambda_{j})^{k_{i}} \in \IC[T].
[/mm]
(ii) Es gilt [mm] V=H_{1}\oplus... \oplus H_{r} [/mm] und [mm] dim(H_{i})=l_{i} [/mm] für alle i [mm] \in [/mm] {1,...,r}.
Hinweis: (ii) per Induktion nach r |
Hi,
mit dieser Aufgabe habe ich echt ein Problem. Ich muss Sie Freitag abgeben, saß jedoch schon das ganze Wochenende und habe mir den Kopf zerbrochen.
Erst mal ein paar Fragen vorab:
Was genau ist der Unterschied zwischen dem charakteristischen Polynom und dem Minimalpolynom und wann sind die gleich?
Ich weiß wohl, dass das Minimalpolynom ein Teiler des charakteristischen ist, jedoch weiß ich nicht, wann die identisch sind und wann nicht.
Und dann die Aufgabe....
Ich habe nicht den blassesten Schimmer.
Wäre echt nett, wenn ihr mir einen Ansatz geben könntet, damit ich weiter komme.
Viele Grüße
Sebastian
Ich habe diese Frage in keinem anderen Forum etc. gestellt.
|
|
|
|
Aufgabe | Aufgabe 1: Es seien V ein endlich erzeugter [mm] {\IC}-Vektorraum, [/mm] f [mm] \in Hom_{\IC}(V,V), [/mm] λ_1,..., λ_r [mm] \in {\IC} [/mm] die paarweise verschiedenen Eigenwerte von f, χ_f (T) [mm] =\prod^{r}_{i=1}(\lambda_i [/mm] − [mm] T)^{l_i} [/mm] und μf (T) = [mm] \prod^{r}_{i=1}(T [/mm] − [mm] \lambda_i)^{k_i} [/mm] . Für i ∈ {1,... , r} sei der Untervektorraum [mm] H_i [/mm] von V definiert durch [mm] H_i [/mm] := ker((f − [mm] \lambda_i [/mm] · [mm] id_{V})^{k_i} [/mm] ). Zeigen Sie:
(i) Es gilt [mm] H_i [/mm] = [mm] q_i(f)(V [/mm] ) mit qi(T) := [mm] {\prod^{r}_{j=1}}_{j \neq i}(T [/mm] − [mm] \lambda_j)^{k_j} \in [/mm] C[T].
(ii) Es gilt V = [mm] \oplus^{r}_{i=1} H_i [/mm] und dim(Hi) = [mm] l_i [/mm] für alle i ∈ {1, . . . , r}. |
Hallo,
ich brauch einmal einen Tipp für diese Aufgabe:
Aus der Vorlesung wissen wir bereits:
[mm] U_1:= q_i(f)(V)
[/mm]
[mm] U_2:= (f-\lambda_i id_V)^{k_i}
[/mm]
V= [mm] U_1 \oplus U_2
[/mm]
Und beide U f-invariant
____
Es exisiteren a,b [mm] \in [/mm] K[T] mit
[mm] (a*q_i)(f) [/mm] + b(f)* [mm] (f-\lambda_i id_V)^{k_i} [/mm] = [mm] id_v
[/mm]
____
Hier kommen dann einige Überlegungen
(i)
Für jedes v [mm] \in [/mm] V exisiteren [mm] u_1 \in U_1 [/mm] und [mm] u_2 \in U_2 [/mm] mit v = [mm] u_1 [/mm] + [mm] u_2
[/mm]
[mm] "\supseteq"
[/mm]
Sei also v [mm] \in q_i(f)(V), [/mm] dann existiert ein w [mm] \in [/mm] V mit [mm] q_i(f)(w) [/mm] = v
...
[mm] "\subseteq"
[/mm]
wir nennen mal: [mm] (f-\lambda_i id_V)^{k_i}(v) [/mm] := g(v)
Sei also v [mm] \in H_i, [/mm] dann gilt g(v) = 0
0 = g(v) = [mm] g(u_1) [/mm] + [mm] g(u_2) [/mm] = 0 + [mm] g(u_2)
[/mm]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:39 So 10.05.2009 | Autor: | SEcki |
> Es exisiteren a,b [mm]\in[/mm] K[T] mit
>
> [mm](a*q_i)(f)[/mm] + b(f)* [mm](f-\lambda_i id_V)^{k_i}[/mm] = [mm]id_v[/mm]
Ah, sehr gut.
> (i)
> Für jedes v [mm]\in[/mm] V exisiteren [mm]u_1 \in U_1[/mm] und [mm]u_2 \in U_2[/mm]
> mit v = [mm]u_1[/mm] + [mm]u_2[/mm]
>
> [mm]"\supseteq"[/mm]
> Sei also v [mm]\in q_i(f)(V),[/mm] dann existiert ein w [mm]\in[/mm] V mit
> [mm]q_i(f)(w)[/mm] = v
Dann multiplizier doch mal [m](f-\lambda id)^{k_i}[/m] an beide Seiten dran - die linke Seite ist dann Null, also ist v in [m]H_i[/m].
> [mm]"\subseteq"[/mm]
> wir nennen mal: [mm](f-\lambda_i id_V)^{k_i}(v)[/mm] := g(v)
Wir haben aber ein Element aus dem Kern ...
> Sei also v [mm]\in H_i,[/mm] dann gilt g(v) = 0
Ja.
> 0 = g(v) = [mm]g(u_1)[/mm] + [mm]g(u_2)[/mm] = 0 + [mm]g(u_2)[/mm]
Und weiter? Ich würde das andes machen: ich würde zeigen, dass [m]q_i(f)[/m] auf [m]H_i[/m] injektiv, und damit surjektiv ist. Dazu: Sei v in [m]H_i[/m] Nach ganz oben gilt dann [m](a*q_i)(f)(v) + \underbrace{(b*(T-\lambda_i id_V)^{k_i})(f)(v)}_{=0} = v[/m], also [m]q_i(f)[/m] injektiv.
SEcki
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 So 10.05.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|