www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwert und Invertierbarkeit
Eigenwert und Invertierbarkeit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert und Invertierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Di 07.07.2009
Autor: iceman_

Aufgabe
Gegeben ist die Matrix A := [mm] \pmat{ 2 & 1 & 3 \\ 0 & a & 3 \\ 0 & 0 & 2 } [/mm] ∈  [mm] \IC3,3 [/mm] mit a ∈ [mm] \IC [/mm]

1. Bestimmen Sie die Eigenwerte von A in Abhängigkeit des Parameters a
∈ [mm] \IC [/mm]

2. Bestimmen Sie a ∈ [mm] \IC [/mm] , so dass die Matrix A nicht invertierbar ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute,
wollte mich mal vergewissern ob ich die beiden aufgaben richtig mache.
also zu 1 da es sich um eine Dreiecks Matrix handelt kann man das charakteristischen Polynom einfach ablesen, ich hab also (2-x)(a-x)(2-x)
da sind die Eigenwerte doch 2,2 und a, dann gibt es immer nur dann einen nicht reelen Eigenwert wenn man a Komplex wählt, oder??

zu 2, Die Matrix ist dann nicht invertierbar wenn die Determinante = 0 ist
und nach meinen Rechnungen ist es genau dann wenn ich a =0 wähle, aber da a [mm] \in \IC [/mm] sein soll weiss ich nicht ob ich a = 0 wähle kann und ob es da nicht eine andere Lösung gibt ?

mach ich das so richtig??

vielen dank im Voraus :)

        
Bezug
Eigenwert und Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Di 07.07.2009
Autor: steppenhahn

Hallo!

> Gegeben ist die Matrix A := [mm]\pmat{ 2 & 1 & 3 \\ 0 & a & 3 \\ 0 & 0 & 2 }[/mm]
> ∈  [mm]\IC3,3[/mm] mit a ∈ [mm]\IC[/mm]
>
> 1. Bestimmen Sie die Eigenwerte von A in Abhängigkeit des
> Parameters a
> ∈ [mm]\IC[/mm]
>  
> 2. Bestimmen Sie a ∈ [mm]\IC[/mm] , so dass die Matrix A nicht
> invertierbar ist.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo Leute,
> wollte mich mal vergewissern ob ich die beiden aufgaben
> richtig mache.
>  also zu 1 da es sich um eine Dreiecks Matrix handelt kann
> man das charakteristischen Polynom einfach ablesen, ich hab
> also (2-x)(a-x)(2-x)
>  da sind die Eigenwerte doch 2,2 und a, dann gibt es immer
> nur dann einen nicht reelen Eigenwert wenn man a Komplex
> wählt, oder??

Alles richtig ! [ok]
  

> zu 2, Die Matrix ist dann nicht invertierbar wenn die
> Determinante = 0 ist
>  und nach meinen Rechnungen ist es genau dann wenn ich a =0
> wähle

[ok]
Genau! Das kann man sehr schön daran sehen, dass die Matrix dann keinen Vollrang hat. Alle anderen Werte für a sind möglich.

, aber da a [mm]\in \IC[/mm] sein soll weiss ich nicht ob ich

> a = 0 wähle kann und ob es da nicht eine andere Lösung
> gibt ?

a = 0 ist die einzige Lösung, warum sollte es wegen a [mm] \in \IC [/mm] anders sein?
Du hast doch durch die Determinante, die in Körpern definiert ist (also auch in [mm] \IC) [/mm] a = 0 als einzige Lösung herausgefunden :-)

Viele Grüße, Stefan.



Bezug
                
Bezug
Eigenwert und Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 Di 07.07.2009
Autor: iceman_

da fällt mir ein Stein vom Herzen :)
vielen dank für sie schnelle Antwort
das sichert mir die Zulassung zur Klausur :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]