www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwert in C und R, Matrix
Eigenwert in C und R, Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert in C und R, Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 22:59 So 08.05.2005
Autor: Marianne

Ich habe diese Frage in keinem anderen Forum  gestellt.

Hallo,
Ich habe bei dieser Aufgabe Probleme:

Wir betrachten einerseits einen reellen Endmorphismus f : [mm] \IR^{2} [/mm] → [mm] \IR^{2} [/mm] und andererseits einen komplexen Endomorphismus g : [mm] \IC^{2} [/mm] → [mm] \IC^{2}; [/mm] beide dargestellt durch die Standardmatrix
A [mm] =\pmat{ 0 & -1 \\ 1 & 0 } [/mm]
Bestimme (a) für f und (b) für g alle Eigenwerte, deren geometrische und algebraische Vielfachheiten sowie Basen der
entsprechenden Eigenräume.

Ich habe erst mal bei dem charakt. Polynom. ausgerechnet: [mm] x^{2}-1, [/mm] ist dieser richtig, die NST, wären ja die EWs und algebr. Vielfachh. =2, geometr. V=1, stimmt dies erst mal ???
Und was ist nun der Unterschied zw. den Berechnungen bei [mm] \IC [/mm] und [mm] \IR? [/mm]
Bitte helft mir!

        
Bezug
Eigenwert in C und R, Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 So 08.05.2005
Autor: Crispy

Hallo Marianne,
> Ich habe erst mal bei dem charakt. Polynom. ausgerechnet:
> [mm]x^{2}-1,[/mm] ist dieser richtig, die NST, wären ja die EWs und
> algebr. Vielfachh. =2, geometr. V=1, stimmt dies erst mal

Nein, dein char. Polynom hätte -1 und 1 als NST.
Aber das ganze char. Polynom ist falsch.
Nochmal versuchen, dann siehst du auch den Unterschied zwischen [mm] \IC und\IR. [/mm]

Gruss, Crispy

Bezug
                
Bezug
Eigenwert in C und R, Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 So 08.05.2005
Autor: Marianne

ich habe jetzt als polynom [mm] x^{2} [/mm] raus mit EW =1
ich kenn immr noch nicht den unterschied in C und R
ist das Polynom wieder falsch oder bin ich nur zu blöd dies zu kapieren???

Bezug
                        
Bezug
Eigenwert in C und R, Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 So 08.05.2005
Autor: Crispy


> ich habe jetzt als polynom [mm]x^{2}[/mm] raus mit EW =1
>  ich kenn immr noch nicht den unterschied in C und R
>  ist das Polynom wieder falsch oder bin ich nur zu blöd
> dies zu kapieren???

Das Polynom lautet:
[mm] \det \pmat{0 - \lambda & -1 \\ 1 & 0 - \lambda }[/mm]
Also [mm] (-\lambda) * (-\lambda) - 1 * (-1) = \lambda^2 + 1[/mm]
Dieses hat nur komplexe, und keine reelen Nullstellen.
Hier macht sich dann der Unterschied zwischen [mm]\IC[/mm] und [mm]\IR[/mm] bemerkbar.

Jetzt sollte es aber klappen, oder?
Vielleicht noch der Hinweis
Eigenwerte i und -i
Eigenvektoren dazu (1 / -i) und (1 / i).

Gruss, Crispy

Bezug
                                
Bezug
Eigenwert in C und R, Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:56 So 08.05.2005
Autor: Marianne

danke für die schnelle Hilfe!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]