www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwert,Isomorphismus
Eigenwert,Isomorphismus < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert,Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Do 06.09.2012
Autor: quasimo

Aufgabe
Sei [mm] \psi: [/mm] V -> W ein linearer Isomorphismus
[mm] \phi: [/mm] V -> V
[mm] \psi \circ \phi \circ \psi^{-1} [/mm] : W->W
Ist [mm] \lambda [/mm] Eigenwert von [mm] \phi [/mm] <=> [mm] \lambda [/mm] Eigenwert von [mm] \psi \circ \phi \circ \psi^{-1} [/mm]




[mm] \lambda [/mm] Eigenwert von [mm] \phi [/mm]
d.h. [mm] \exists v\not=0 \in [/mm] V sodass
[mm] \phi(v) [/mm] = [mm] \lambda [/mm] v



Wisst ihr wie ich das mache?
LG,
quasimo

        
Bezug
Eigenwert,Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Do 06.09.2012
Autor: Teufel

Hi!

Alles ok bis hierhin. Weil [mm] \psi [/mm] nun bijektiv ist. gibt es ein [mm] $w\in [/mm] W$ mit [mm] \psi^{-1}(w)=v. [/mm] Setze dieses w mal in [mm] \psi\circ\varphi\circ\psi^{-1} [/mm] ein.

Bezug
                
Bezug
Eigenwert,Isomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Do 06.09.2012
Autor: quasimo

ah danke ;=)

LG,
quasimo

Bezug
                        
Bezug
Eigenwert,Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Do 06.09.2012
Autor: quasimo

Eine Frage hab ich noch dazu also ich weiß nun:
Ist $ [mm] \lambda [/mm] $ Eigenwert von $ [mm] \phi [/mm] $ <=> $ [mm] \lambda [/mm] $ Eigenwert von $ [mm] \psi \circ \phi \circ \psi^{-1} [/mm] $
und was wir in der Vorlesung bewiesen haben:
v Eigenwert von [mm] \phi [/mm] zum Eigenwert [mm] \lambda [/mm] <=> [mm] \psi(v) [/mm] Eigenvektor von [mm] \psi \circ \phi \circ \psi^{-1} [/mm] zum Eigenwert [mm] \lambda [/mm]

Gilt dann auch?:
[mm] \phi [/mm] diagonalisierbar <=> [mm] \psi \circ \phi \circ \psi^{-1} [/mm] diagonalisierbar
[mm] \phi [/mm] ist diagonalisierbar, dann existiert eine Basis von V, die aus Eigenvektoren von [mm] \phi [/mm] besteht. dann existiert automatisch auch eine Basis von W die aus eigenvektoren besteht und umgekehrt oder?
Hab ich mich da falsch ausgedrückt?

Bezug
                                
Bezug
Eigenwert,Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Do 06.09.2012
Autor: Schadowmaster


> Gilt dann auch?:
>  [mm]\phi[/mm] diagonalisierbar <=> [mm]\psi \circ \phi \circ \psi^{-1}[/mm]

> diagonalisierbar
>  [mm]\phi[/mm] ist diagonalisierbar, dann existiert eine Basis von
> V, die aus Eigenvektoren von [mm]\phi[/mm] besteht. dann existiert
> automatisch auch eine Basis von W die aus eigenvektoren
> besteht und umgekehrt oder?
>  Hab ich mich da falsch ausgedrückt?


[ok]

Weißt du bereits, dass jede lineare Abbildung zwischen endlichdimensionalen Vektorräumen eine eindeutige Abbildungsmatrix besitzt?
Wenn du weißt wie Diagonalsierbarkeit für Matrizen definiert ist dürfte es noch etwas klarer werden. ;)


Bezug
                                        
Bezug
Eigenwert,Isomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:36 Do 06.09.2012
Autor: quasimo

danke ist klar ;)

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]