www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwert
Eigenwert < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:39 So 26.06.2005
Autor: sternchen19.8

Hallöchen! Ich hab da mal ne knifflige Frage und hoffe einer von euch kann mir dabei helfen. Es sei A  [mm] \in [/mm] M_ [mm] \IC(n,n) [/mm] eine Matrix, deren Eigenwerte die n-ten Einheitswurzeln sind. Zeigen Sie, dass dann [mm] A^n=En [/mm] (Einheitsmatrix) gilt.
Würde mich schon über jeden Ansatz freuen!

        
Bezug
Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 So 26.06.2005
Autor: DaMenge

Hallo,

Kann es sein, dass [mm] A^n [/mm] nur ähnlich zu der Einheitsmatrix sein soll?

Dann wäre es nämlich einfach : A ist dann nämlich ähnlich zu der Diagonalmatrix D mit den Einheitswurzeln auf der Diagonalen, also gibt es eine Basis, so dass $ [mm] A=T*D*T^{-1} [/mm] $

Dann ist $ [mm] A^n [/mm] = [mm] T*D^n *T^{-1}=T*E_n *T^{-1} [/mm] $ , also ist [mm] A^n [/mm] ähnlich zur Einheitsmatrix...

Überprüfe also mal bitte dein Gleichheitszeichen, ob da nicht eher ein ähnlichkeitszeichen steht (also ein Punkt drüber, oder gewellt oder so).

viele Grüße
DaMenge

Bezug
                
Bezug
Eigenwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 So 26.06.2005
Autor: sternchen19.8

Erstaml Danke, dass du so schnell geantwortet hast. Also, in meiner Aufgabe steht wirklich ein Gleichheitszeichen. Heißt das dann, das das was du geschrieben hast schon die Lösung ist?

Bezug
                
Bezug
Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 So 26.06.2005
Autor: SEcki


> Dann ist [mm]A^n = T*D^n *T^{-1}=T*E_n *T^{-1}[/mm]

[m]=T*T^{-1}=E_n[/m]. Die Einheistmatrix ist blos zu sich selbst ähnlich!

SEcki

Bezug
                        
Bezug
Eigenwert: Mitteiluung
Status: (Frage) beantwortet Status 
Datum: 21:49 So 26.06.2005
Autor: sternchen19.8

Ansich ist es ja ganz einleuchtend, was ihr da geschrieben habt, aber ich hab trtzdem noch eine Frage. In der Aufgabenstellung steht was von Eigenwerten, die die n-ten Einheitswurzeln sind, sollte man diese nicht noch irgendwie miteinbeziehen?

Bezug
                                
Bezug
Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Mo 27.06.2005
Autor: jeu_blanc

Bonjour!

Die wurden an sich schon mit einbezogen: Die Diagonalmatrix hat als Einträge die Eigenwerte der Originalmatrix, also auf der Hauptdiagonalen deine n-ten Einheitswurzeln.
Durch das "hoch-n-nehmen" wird aus der Diagonamlatrix mit den n-ten Einheitswurzeln eine Matrix mit ausschließlich 1en auf der Hauptdiagonale (n-te Einheitswurzel hoch n), also die Einheitsmatrix, das neutrale Element der Matrixmultiplikation.
Somit bleiben noch T und [mm] T^{-1} [/mm] für die Multiplikation erhalten, und diese ergeben wiederum eine Einheitsmatrix als Ergebnis.

Au revoir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]