www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Eigenvektoren und Basis
Eigenvektoren und Basis < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren und Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 Mi 09.11.2011
Autor: qed

Aufgabe
Sei [mm]V=\IR^3[/mm] und seien [mm]U, W[/mm] Unterräume von [mm]V[/mm].
Sei [mm](\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix})[/mm] eine Basis von [mm]U[/mm] und [mm](\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})[/mm] eine Basis von [mm]W[/mm].
Sei [mm]f \in End(V)[/mm] definiert durch [mm]f(v)=u[/mm] für [mm]v=u+w[/mm] für [mm]u\in U, w\in W[/mm].

a) Berechnen Sie eine Basis [mm]B[/mm] von [mm]V[/mm] aus Eigenvektoren von [mm]f[/mm].
b) Berechnen Sie die Matrixdarstellung von [mm]f[/mm] bezüglich der Basis [mm]B[/mm].

Hallo,

komme hier irgendwie nicht weiter.

b) ist klar, aber a):

Es ist doch [mm]Bild(f) = U[/mm]. Damit kann ich [mm]f(\begin{pmatrix} a \\ b \\ c \end{pmatrix})=\begin{pmatrix} a+b \\ -a \\ b \end{pmatrix}[/mm] setzen. Jetzt will ich die Eigenwerte von [mm]f[/mm] berechnen, also erstmal das Charakteristische Polynom von [mm]f[/mm]. Hierzu berechne ich das Charakteristische Polynom der Darstellungsmatrix von [mm]f[/mm] bezüglich der Standartbasis von V:
[mm]p=det\begin{pmatrix} X-1 & -1 & 0 \\ 1 & X & 0 \\ 0 & -1 & X \end{pmatrix}=X(X^{2}-X+1)[/mm]. Die einzige reele Nullstelle von p ist 0 und [mm](\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})[/mm] ist eine Basis des Eigenraums zum Eigenwert 0. Hiermit kann ich natürlich nichts anfangen.

Wo kommt hier W ins Spiel? Wenn ich eine andere als die Standartbasis von [mm]\IR^3[/mm] nehme, erhalte ich auch den Eigenwert 0, nur dann mit Vielfachheit größer 1.
Irgendwo mache ich doch einen gravierenden Fehler!

Bin für jeden Hinweis sehr dankbar.

Viele Grüße

qed

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenvektoren und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Mi 09.11.2011
Autor: fred97


> Sei [mm]V=\IR^3[/mm] und seien [mm]U, W[/mm] Unterräume von [mm]V[/mm].
> Sei [mm](\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix})[/mm]
> eine Basis von [mm]U[/mm] und [mm](\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})[/mm]
> eine Basis von [mm]W[/mm].
>  Sei [mm]f \in End(V)[/mm] definiert durch [mm]f(v)=u[/mm] für [mm]v=u+w[/mm] für
> [mm]u\in U, w\in W[/mm].
>  
> a) Berechnen Sie eine Basis [mm]B[/mm] von [mm]V[/mm] aus Eigenvektoren von
> [mm]f[/mm].
>  b) Berechnen Sie die Matrixdarstellung von [mm]f[/mm] bezüglich
> der Basis [mm]B[/mm].
>  Hallo,
>  
> komme hier irgendwie nicht weiter.
>  
> b) ist klar, aber a):
>  
> Es ist doch [mm]Bild(f) = U[/mm]. Damit kann ich [mm]f(\begin{pmatrix} a \\ b \\ c \end{pmatrix})=\begin{pmatrix} a+b \\ -a \\ b \end{pmatrix}[/mm]
> setzen. Jetzt will ich die Eigenwerte von [mm]f[/mm] berechnen, also
> erstmal das Charakteristische Polynom von [mm]f[/mm]. Hierzu
> berechne ich das Charakteristische Polynom der
> Darstellungsmatrix von [mm]f[/mm] bezüglich der Standartbasis von
> V:
>  [mm]p=det\begin{pmatrix} X-1 & -1 & 0 \\ 1 & X & 0 \\ 0 & -1 & X \end{pmatrix}=X(X^{2}-X+1)[/mm].
> Die einzige reele Nullstelle von p ist 0 und
> [mm](\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})[/mm] ist eine Basis
> des Eigenraums zum Eigenwert 0. Hiermit kann ich natürlich
> nichts anfangen.
>
> Wo kommt hier W ins Spiel? Wenn ich eine andere als die
> Standartbasis von [mm]\IR^3[/mm] nehme, erhalte ich auch den
> Eigenwert 0, nur dann mit Vielfachheit größer 1.
>  Irgendwo mache ich doch einen gravierenden Fehler!
>
> Bin für jeden Hinweis sehr dankbar.

Mann o mann, man kann sich das Leben auch künstlich schwer machen !

(oben stimmt einiges nicht)

Setze

   [mm] u_1:=\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, [/mm]

   [mm] u_2:=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} [/mm]

   [mm] w:=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} [/mm]

Mach Dir folgendes Klar:

          [mm] B:=\{u_1,u_2,w\} [/mm]  ist eine Basis  des [mm] \IR^3, [/mm]

          [mm] f(u_1)=u_1=1*u_1, f(u_2)=u_2=1*u_2 [/mm] und $f(w)=0=0*w$


FRED


>  


>  
> Viele Grüße
>  
> qed
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Bezug
                
Bezug
Eigenvektoren und Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 Mi 09.11.2011
Autor: qed


> Mann o mann, man kann sich das Leben auch künstlich schwer
> machen !
>  
> (oben stimmt einiges nicht)
>  
> Setze
>  
> [mm]u_1:=\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},[/mm]
>  
> [mm]u_2:=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}[/mm]
>
> [mm]w:=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}[/mm]
>  
> Mach Dir folgendes Klar:
>  
> [mm]B:=\{u_1,u_2,w\}[/mm]  ist eine Basis  des [mm]\IR^3,[/mm]
>  
> [mm]f(u_1)=u_1=1*u_1, f(u_2)=u_2=1*u_2[/mm] und [mm]f(w)=0=0*w[/mm]
>  
>
> FRED


Danke FRED,

für den "Schlag auf den Hinterkopf".

Habe mir nochmal die Definition von Eigenwerten und Eigenvektoren angeschaut. Nun ist klar:
[mm]u_1[/mm] ist Eigenvektor von [mm]f[/mm] zum Eigenwert 1,
[mm]u_2[/mm] ist Eigenvektor von [mm]f[/mm] zum Eigenwert 1 und
[mm]w[/mm] ist Eigenvektor von [mm]f[/mm] zum Eigenwert 0.

Da [mm]\{u_1,u_2,w\}[/mm] eine Basis von [mm]\IR^3[/mm] ist, habe ich eine Basis von V aus Eigenvektoren von [mm]f[/mm] gefunden.

Vielen Dank nochmal.

Grüße

qed




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]