www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Eigenvektoren
Eigenvektoren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren: x_{min}, x_{max}
Status: (Frage) beantwortet Status 
Datum: 23:24 So 22.06.2008
Autor: Spider348

Aufgabe
Sei [mm] A\in M(nxn,\IR) [/mm] symmetrisch. Für [mm] x=(x_{1},...,x_{n})^{t} [/mm] sei:
f: [mm] \IR^{n}\to\IR, [/mm] f(x):= [mm] x^{t}Ax [/mm]

Sei [mm] S_{n-1}=\{x\in\IR^{n}|\parallel x\parallel^{2}=1\} [/mm] die Einheitsphäre. Zeigen Sie: Es gibt [mm] x_{min}, x_{max}\in S_{n-1} [/mm] s.d.
[mm] f(x_{min})=inf\{f(x)|x \in S_{n-1}\}, f(x_{max})=sup\{f(x)|x \in S_{n-1}\} [/mm]
und [mm] x_{min}, x_{max} [/mm] sind Eigenvektoren von A. Insbesondere besitzt A einen reellen Eigenwert.

Hallo,
Ich hoffe, ihr könnt mir weiter helfen. wie kann ich das geforderte beweisen? Bin ratlos.
Würde mich riesig über Hinweise, Tipps, Ansätze, Lösungsskizzen, Lösungen^^ freuen. Damit würdet ihr mir sehr weiter helfen!

Eure Spider

        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Mo 23.06.2008
Autor: fred97

Dass f auf der Einheitssphäre Minimum und Maximum annimmt, folgt aus der Stetigkeit von f und der Kompaktheit der Sphäre.

Für den Rest der Aufgabe: suche Extremstellen von f unter der Nebenbedingung
||x|| = 1  (Lagrange). Wenn Du es richtig machst, wirst Du sehen, wie hier Eigenwerte und Eigenvektoren vo A ins Spiel kommen.


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]