www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenvektor, Eigenwert
Eigenvektor, Eigenwert < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor, Eigenwert: Frage
Status: (Frage) beantwortet Status 
Datum: 18:18 Di 25.01.2005
Autor: beauty

Hey!
seien [mm] u_1, u_2 [/mm] Eigenvektoren zu A mit [mm] f_1 [/mm] bzw. [mm] f_2 [/mm] und sei [mm] f_1 [/mm] ungleich [mm] f_2, [/mm] so ist [mm] u_1+u_2 [/mm] von Null verschieden und kein Eigenvektor.
Kann mir vielleicht jemand bei dieser Aufgabe helfen?





Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Eigenvektor, Eigenwert: Lin. Unabhängigkeit
Status: (Antwort) fertig Status 
Datum: 19:02 Di 25.01.2005
Autor: Gnometech

Grüße!

Das ist gar nicht schwer, wenn man folgendes benutzt (was ihr dürft):

Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhängig.

Da eure Eigenwerte verschieden sind, sind es die Vektoren auch - daraus folgt sofort die erste Behauptung. Die zweite erhält man ebenso durch Widerspruch: nimm an, es gibt ein [mm] $\mu \in [/mm] K$ mit [mm] $f(u_1 [/mm] + [mm] u_2) [/mm] = [mm] \mu(u_1 [/mm] + [mm] u_2)$. [/mm] Das läßt sich mit Hilfe der Linearität der Abbildung und dem, was man über die Vektoren und ihre Eigenwerte weiß ganz leicht zu einem Widerspruch führen. :)

Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]