www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenvektor
Eigenvektor < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor: Bedeutung
Status: (Frage) beantwortet Status 
Datum: 18:24 So 28.10.2007
Autor: BeelzeBub

Hallo,

kann mir einer die Bedeutung des Eigenvektors erklären? Ich weis nur, dass der Eigenvektor ein vom Nullvektor verschiedener Vektor ist und um das [mm] \lambda-fache [/mm] (dem dazugehörigen Eigenwert) gestreckt ist. Die Menge aller Eigenvektoren und dem Nullvektor heißt Eigenraum. Es gibt zu jedem Eigenwert einen Eigenvektor, so dass gilt [mm] Ab=\lambda*b [/mm]

Nur welche Bedeutung hat der Eigenvektor? Warum macht man das?

        
Bezug
Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 So 28.10.2007
Autor: max3000

Die Definition vom Eigenvektor hast du ja schon.
Das ist ein Vektor für den
[mm] \lambda [/mm] existiert, so dass [mm] f(v)=\lambda [/mm] v

Das ganze brauchst du ja wie gesagt für den Eigenraum und damit kannst du zum Beispiel Darstellungsmatrizen diagonalisieren.

Gruß
Max

Bezug
                
Bezug
Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 So 28.10.2007
Autor: BeelzeBub

Eigenvektoren haben nichts mit einer Basis zu tun, oder? Außer, dass ich die Eigenvektor für die Diagonalisierung einer Matrix brauche, haben sie sonst keine Bedeutung?

Wenn ich eine Matrix diagonalisiere könnte man dann direkt die Eigenwerte nehmen oder muss ich den Umweg über [mm] D=B^{-1}AB [/mm] nehmen? Wenn ich nämlich die Eigenwerte bestimme, dann weis ich noch nicht zu welcher Zeile (sprich zu welchem [mm] \alpha_{ii}) [/mm] welcher Eigenwert gehört.

Bezug
                        
Bezug
Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 So 28.10.2007
Autor: Rene

Die Eigenwerte benötigst du zum Beispiel in der Mechanik. Die Wurzel der Eigenwerte der Schwingungsmatrizen zum Beispiel liefert die Eigenfrequenzen des Systems.
In der Festigkeitstheorie, sind die Eigenwerte des Spannungstensors gleich den Hauptspannungen.

In der Regelungstechnik sind die Eigenwerte eine Möglichkeit um ein System auf Stabilität zu prüfen.

Die Eigenvektoren bzw. der Eigenraum für symmetrische Matrizen, ermöglicht die Spektralzerlegung der Matrizen und somit eine Faktorisierung einer positive definiten bzw. positiv semi definiten Matrix.
Daraus folgen dann verfahren zur Lösung von Gleichungssystemen, z.B. die Cholesky-Zerlegung!

MFG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]