www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Eigenschaften einer Relation
Eigenschaften einer Relation < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften einer Relation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Sa 15.05.2010
Autor: ChaoZz

Aufgabe
Welche der Ihnen bekannten Eigenschaften binärer Relationen sind bei den folgenden Relationen nachweisbar.

R = {(x,y): x [mm] \varepsilon \IR \wedge [/mm] y [mm] \varepsilon \IR \wedge [/mm] x < y}

Hallo,
wir diskutieren hier gerade, ob die Relation Antisymmetrisch UND Asymetrisch, oder nur Asymetrisch ist. Laut Lösung wäre sie beides und wir wissen nun nicht, ob beide Eigenschaften sich gegenseitig ausschließen oder nicht. Ich bin der Meinung, dass Antisymmetrie sowohl als auch Schlingen ermöglicht aber in diesem Fall keine Schlingen existieren da x < y was aber nicht bedeutet, dass Schlingen grundsätzlich möglich sein müssen, wenn wir die Relation klar mit x < y festlegen.

        
Bezug
Eigenschaften einer Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Sa 15.05.2010
Autor: Marcel

Hallo,

> Welche der Ihnen bekannten Eigenschaften binärer
> Relationen sind bei den folgenden Relationen nachweisbar.
>  
> $R [mm] =\{(x,y): x \in \IR \wedge y \in \IR \wedge x < y\}$ [/mm]
>  Hallo,
> wir diskutieren hier gerade, ob die Relation
> Antisymmetrisch UND Asymetrisch, oder nur Asymetrisch ist.
> Laut Lösung wäre sie beides und wir wissen nun nicht, ob
> beide Eigenschaften sich gegenseitig ausschließen oder
> nicht. Ich bin der Meinung, dass Antisymmetrie sowohl als
> auch Schlingen ermöglicht aber in diesem Fall keine
> Schlingen existieren da x < y was aber nicht bedeutet, dass
> Schlingen grundsätzlich möglich sein müssen, wenn wir
> die Relation klar mit x < y festlegen.

die Relation ist in der Tat []antisymmetrisch:
Sind nämlich $x,y [mm] \in \IR$ [/mm] mit $x [mm] \not=y\,,$ [/mm] so folgt entweder $x < y$ [mm] ($\gdw [/mm] (x,y) [mm] \in [/mm] R$) oder $y < x$ [mm] ($\gdw [/mm] (y,x) [mm] \in [/mm] R$).

Ferner ist die Relation auch []asymmetrisch, denn:
Ist $(x,y) [mm] \in \IR$, [/mm] so folgt, dass $x,y [mm] \in \IR$ [/mm] und $x < y$ gilt. Wäre nun auch $(y,x) [mm] \in [/mm] R$, so würde zudem $y < x$ gelten, woraus $x < y < x$ und damit, wegen der Transitivität von [mm] $<\,$, [/mm] auch $x < x$ folgen würde. Widerspruch. Also folgt aus $(x,y) [mm] \in [/mm] R$ somit $(y,x) [mm] \notin R\,.$ [/mm]

P.S.:
Dass jede asymmetrische Relation auch antisymmetrisch ist, ist leicht einzusehen:
Sei [mm] $R\,$ [/mm] eine asymmetrische Relation über [mm] $M\,$ [/mm] und angenommen, [mm] $R\,$ [/mm] wäre nicht antisymmetrisch. Dann gibt es $x,y [mm] \in [/mm] M$ mit $x [mm] \not=y$ [/mm] und
$$(x,y) [mm] \in [/mm] R [mm] \wedge [/mm] (y,x) [mm] \in R\,.$$ [/mm]
Dies widerspricht aber der Asymmetrie von [mm] $R\,,$ [/mm] da sonst für $(x,y) [mm] \in [/mm] R$ auch
$$(x,y) [mm] \in [/mm] R [mm] \Rightarrow [/mm] (y,x) [mm] \notin [/mm] R$$
[mm] $$\gdw$$ [/mm]
[mm] $$\neg((x,y) \in [/mm] R) [mm] \vee \neg((y,x) \in [/mm] R)$$
[mm] $$\underset{de\;\;\;Morgan}{\gdw}$$ [/mm]
[mm] $$\blue{\neg(}(x,y) \in [/mm] R [mm] \wedge [/mm] (y,x) [mm] \in R\blue{)}$$ [/mm]
gelten müßte.

Besten Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]