www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Eigenschaften der Dichtefunkt.
Eigenschaften der Dichtefunkt. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften der Dichtefunkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Di 12.03.2013
Autor: Tony1234

Aufgabe
Sind die Eigenschaften einer Dichtefunktion (Verteilungsfunktion  oder Wahrscheinlichkeitsfunktion) erfüllt?

g: [mm] \IR \to \IR [/mm]    x [mm] \mapsto \begin{cases} e^x, & \mbox{für } x\le0 \\ 0 & \mbox{sonst } \end{cases} [/mm]



Hallo,

soweit ich richtig informiert bin, müsste für eine Dichtefunktoin folgendes gelten: [mm] \integral_{\infty}^{-\infty}{e^x dx} [/mm] =1

Für die Verteilungsfunktion zusätzlich: [mm] lim_x_\to_\infty [/mm] =1

Und für eine Wahrscheinlichkeitsfunktion [mm] :\summe_{i=1}^{n} e^x [/mm] =1
[mm] &(x)\ge [/mm] 0


Ich bin mir nicht ganz sicher, ob dies die einzigen Kriterien zur Überprüfung sind. Es wäre super, wenn mir jemand bei der Prüfung etwas unter die Arme greifen könnte, bin hier doch recht überfordert. Es handelt sich außerdem um eine MC aufgabe, für die ich max. 3min zeit habe.



        
Bezug
Eigenschaften der Dichtefunkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Di 12.03.2013
Autor: Diophant

Hallo,

vorneweg: es handelt sich um eine Dichte.

Du hast aber von zwei entscheidenden Kriterien für eine Dichte das zunächst wichtigere nicht genannt: sie darf nicht negativ sein. Dass dies hier zutrifft, ist offensichtlich. Und wenn du jetzt noch die Forderung mit dem Integral von [mm] -\infty [/mm] bis [mm] \infty [/mm] ins Feld führst, dann ist alles gezeigt. Denn für die zugehörige Verteilungsfunktion muss gelten:

[mm] \lim_{x\to-\infty}F(x)=0 [/mm]

[mm] \lim_{x\to\infty}F(x)=1 [/mm]

F(x) ist monoton steigend

Mache dir klar, dass dies äquivalent zu den beiden Forderungen für die Dichte ist.

Da du hier eine stetige Verteilung hast, ist die Verwendung des Begriffes Wahrscheinlichkeitsfunktion nicht sinnvoll, denn die Funktionswerte einer Dichte sagen über Wahrscheinlichkeiten nichts direktes aus.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]