www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Eigenraum
Eigenraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Do 14.02.2008
Autor: domenigge135

Hallo ich habe folgendes Problem. Also gegeben ist der Vektor [mm] u=\vektor{4 \\ -3}. [/mm]
Ich sollte nun eine Householder Transformation machen, welches mich auf folgendes Ergebnis gebracht hat: [mm] \vmat{ -\bruch{7}{25} & \bruch{25}{25} \\ \bruch{24}{25} & \bruch{7}{25} }. [/mm]
Nun sollte ich die Eigenwerte berechnen. Diese sind: [mm] x_1=1 [/mm] und [mm] x_2=-1. [/mm]
Als nächstes brauchte ich die Eigenvektoren. Es wäre nun net, wenn ihr folgenden Weg auf richtigkeit überprüfen bzw. ergänzen könntet.
ich setze zunächst meinen Eigenwert [mm] x_1=1 [/mm] in [mm] \vmat{ -\bruch{7}{25}-x & \bruch{25}{25} \\ \bruch{24}{25} & \bruch{7}{25}-x } [/mm] ein und bringe in NZSF.
Ich erhalte: [mm] \vmat{ 1 & -\bruch{3}{4} \\ 0 & 0 }. [/mm]
Nun schreibe ich [mm] x_1-\bruch{3}{4}x_2=0. [/mm]
Da [mm] x_1 [/mm] Kopfvariable ist, drücke ich diese durch die nicht kopfvariable [mm] -\bruch{3}{4}x_2 [/mm] aus.
Ich erhalte: [mm] x_1=\bruch{3}{4}x_2. [/mm]
Außerdem setze ich [mm] x_2=s [/mm] für s [mm] \in \IR. [/mm]
Also steht dort jetzt [mm] x_1=\bruch{3}{4}s. [/mm]
Ich schreibe nun, da ich ja eigentlich den Kern berechnet habe:
Ker={ [mm] s\vektor{\bruch{3}{4} \\ 1}|s \in \IR [/mm] }.
Somit erhalte ich zu dem Eigenwert [mm] x_1=1 [/mm] den Eigenvektor [mm] \vektor{\bruch{3}{4} \\ 1} [/mm]

Was sagt ihr dazu??? Wäre das so in Ordnung??? Denn wenn ich das bei arndt- bruenner eingebe, ermittelt der mir als Eigenvektor zu 1 [mm] \vektor{3 \\ 4} [/mm]

Wie dem auch sei wäre ich jetzt auch so zum Eingenwert [mm] x_2=-1 [/mm] vorgegangen.

        
Bezug
Eigenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Do 14.02.2008
Autor: schachuzipus

Hallo domenigge,

du hast einen kleinen Schreibfehler beim Eintrag [mm] $a_{12}$ [/mm] deiner H-Matrix.

Da muss [mm] $\frac{\red{24}}{25}$ [/mm] stehen, das benutzt du auch in deiner weiteren Rechnung, ist also nur ein Typo ;-)

Den Rest hast du richtig berechnet.

Bedenke, dass ein Eigenvektor ja nur irgendein Vektor [mm] \neq [/mm] 0 aus dem Kern ist.

Den Kern hast du richtig berechnet als Spann von [mm] $\vektor{\frac{3}{4}\\1}$, [/mm] also [mm] $\langle\vektor{\frac{3}{4}\\1}\rangle$ [/mm]

Also alle skalaren Vielfachen von [mm] $\vektor{\frac{3}{4}\\1}$, [/mm] das hast du ja auch richtig hingeschrieben, also ist auch das s=4-fache deines EV ein EV zum EW $x=1$ ...  ;-)

Ob du also deinen EV oder das 4-fache davon, also [mm] $\vektor{3\\4}$ [/mm] nimmst, ist deiner Wahl überlassen, beides stimmt jedenfalls


Dein Vorgehen ist also absolut richtig [ok]

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]