www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eig.vektor zu doppelten Eig.we
Eig.vektor zu doppelten Eig.we < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eig.vektor zu doppelten Eig.we: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Mi 20.01.2016
Autor: Schrank

Hallo,
ich muss für folgende Matrix die Eigenwerte und Eigenvektoren bestimmen.

[mm] \pmat{ 1 & -1 \\ 4 & -3 } [/mm]

Als Eigenwert habe ich den doppelten Eigenwert [mm] \lambda=-1 [/mm] und erhalte dann um die Eigenvektoren zu berechnen folgende Matrix
--> [mm] \pmat{ 2 & -1 \\ 4 & -2 } [/mm]
Ich habe nun Probleme mit den Eigenvektoren. Den einen Eigenvektor (1; 2) bekomme ich, wenn ich die erste Zeile*2 von der zweiten abziehe, also
[mm] \pmat{ 2 & -1 \\ 0 & 0 } [/mm]
Um jetzt einen zweiten linear unabhängigen Vektor zu erhalten, habe ich
[mm] \pmat{ 2 & -1 \\ 4 & -2 } [/mm] zum Quadrat genommen und erhalte die Nullmatrix. Ich weiß nicht, was mir das sagen soll.
Wolfram Alpha gibt mir als zweiten Eigenvektor (0;0) an, aber Eigenvektoren sind doch ungleich dem Nullvektor.
Kann mir bitte jemand helfen.

Mfg

        
Bezug
Eig.vektor zu doppelten Eig.we: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mi 20.01.2016
Autor: fred97


> Hallo,
>  ich muss für folgende Matrix die Eigenwerte und
> Eigenvektoren bestimmen.
>  
> [mm]\pmat{ 1 & -1 \\ 4 & -3 }[/mm]
>  
> Als Eigenwert habe ich den doppelten Eigenwert [mm]\lambda=-1[/mm]
> und erhalte dann um die Eigenvektoren zu berechnen folgende
> Matrix
>  --> [mm]\pmat{ 2 & -1 \\ 4 & -2 }[/mm]

>  Ich habe nun Probleme mit
> den Eigenvektoren. Den einen Eigenvektor (1; 2) bekomme
> ich, wenn ich die erste Zeile*2 von der zweiten abziehe,
> also
> [mm]\pmat{ 2 & -1 \\ 0 & 0 }[/mm]
>  Um jetzt einen zweiten linear
> unabhängigen Vektor zu erhalten,


Es gibt keinen zweiten linear unabhängigen Eigenvektor !

FRED



>  habe ich
> [mm]\pmat{ 2 & -1 \\ 4 & -2 }[/mm] zum Quadrat genommen und erhalte
> die Nullmatrix. Ich weiß nicht, was mir das sagen soll.
>  Wolfram Alpha gibt mir als zweiten Eigenvektor (0;0) an,
> aber Eigenvektoren sind doch ungleich dem Nullvektor.
>  Kann mir bitte jemand helfen.
>  
> Mfg


Bezug
                
Bezug
Eig.vektor zu doppelten Eig.we: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Mi 20.01.2016
Autor: Schrank

Danke dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]