www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Effektivzins
Effektivzins < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Effektivzins: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Di 13.06.2006
Autor: Kira007

Hallo zusammen, ich versuche gerade folgende Aufgabe zu verstehen

Eine Sekretärin nimmt zur Finanzierung ihres Skiurlauvbs einen kleinkredit von 2000 € zu den folgenden Konditionen auf. konstante monatliche Rückzahlung bei einer Laufzeit von 24 Monaten; 0,61% Zinsen (Pro Mont) von der aufgenommenen Darlehensumme, zusätzlich einmalige Bearbeitunsgebühr von 2% der Darlehnssumme

habe mir dazu folgendes Gedacht
[latex](0,02*2000=40[/latex] Bearbeitungsgebühr

[latex](0,0061*24*2000=292,80[/latex] Zinsen

[latex]2000+40+292,80:24=97,20[/latex] Rückzahlungsbetrag im Monat

jetzt habe ich im script dazu noch folgendes Stehen

[mm] [latex]2000*q^2=r+\frac{q^2-1}{q-1}[/latex] [/mm] und [mm] [latex]r=97,20*(12+\frac{11}{12}*i)[/latex] [/mm]

q= 1,16578 aber wie komme ich jetzt auf mein Erbenis von q= 1,16578  ?(

Gruß Kira

        
Bezug
Effektivzins: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Mi 14.06.2006
Autor: Josef

Hallo Kira007,


> Eine Sekretärin nimmt zur Finanzierung ihres Skiurlauvbs
> einen kleinkredit von 2000 € zu den folgenden Konditionen
> auf. konstante monatliche Rückzahlung bei einer Laufzeit
> von 24 Monaten; 0,61% Zinsen (Pro Mont) von der
> aufgenommenen Darlehensumme, zusätzlich einmalige
> Bearbeitunsgebühr von 2% der Darlehnssumme
>  
> habe mir dazu folgendes Gedacht
>  [latex](0,02*2000=40[/latex] Bearbeitungsgebühr
>  
> [latex](0,0061*24*2000=292,80[/latex] Zinsen
>  
> [latex]2000+40+292,80:24=97,20[/latex] Rückzahlungsbetrag
> im Monat
>  
> jetzt habe ich im script dazu noch folgendes Stehen
>  
> [mm][latex]2000*q^2=r+\frac{q^2-1}{q-1}[/latex][/mm] und
> [mm][latex]r=97,20*(12+\frac{11}{12}*i)[/latex][/mm]
>
> q= 1,16578 aber wie komme ich jetzt auf mein Erbenis von q=
> 1,16578  ?(
>  


[mm] K_0 [/mm] = 2.000

Es sind beginnend einen Monat nach Kreditaufnahme 24 gleiche Monatsraten r zurückzuzahlen.
Jede dieser 24 Monatsraten r enthält:

[mm]\bruch{1}{24} [/mm]der Kreditsumme als Tilgung (Ratentilgung)

[mm]\bruch{1}{24}[/mm] der Bearbeitungsgebühr

0,61 % der Kreditsumme als Zinsen

Somit errechnet sich die Monatsrate r wie folgt:

r = [mm]\bruch{1}{24}*2.000 +\bruch{1}{24}*40 +2.000*0,0061[/mm]

r = 97,20


Lösungsansatz:

[mm] 2.000q^{24} [/mm] -97,20*[mm]\bruch{q^{24}-1}{q-1}=0[/mm]

q = 1,012698...

p = [mm] 1,012698^{12}-1 [/mm]

p = 16,348... p.a.

p = 16,35 p.a.


Viele Grüße
Josef

Bezug
                
Bezug
Effektivzins: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 So 02.07.2006
Autor: Kira007

Hallo

habe mir die aufgabe gerade noch einmal genau angeschaut wie löst Du die erste Gleichung nach q   damit ich diesen wert erhalte. 1,012698...

Danke für Eure Hilfe

Gruß Kira

Bezug
                        
Bezug
Effektivzins: erster Schritt
Status: (Antwort) fertig Status 
Datum: 12:57 Mo 03.07.2006
Autor: Josef

Hallo Kira007,


>
> habe mir die aufgabe gerade noch einmal genau angeschaut
> wie löst Du die erste Gleichung nach q   damit ich diesen
> wert erhalte. 1,012698...
>  




$ [mm] 2.000q^{24} [/mm] $ -97,20*$ [mm] \bruch{q^{24}-1}{q-1}=0 [/mm] $


Hauptnenner = (q-1)


[mm] 2.000q^{24}*(q-1) [/mm] - [mm] 97,20*(q^{24}-1)= [/mm] 0

Jetzt Klammern auflösen.

Kommst du jetzt selber weiter?

Viele Grüße
Josef

Bezug
                                
Bezug
Effektivzins: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Mo 03.07.2006
Autor: Kira007

Hi Josef

noch nicht ganz

wenn ich das auflöse erhalte ich 2000q^25-2000q^24-97,20q^24-97,20=0

-97,20^23=-97,20

=1,22016  was habe ich den falsch gemacht

Danke für Deine Hilfe
Gruß Kira

Bezug
                                        
Bezug
Effektivzins: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Mo 03.07.2006
Autor: Josef

Hallo Kira,

[mm] 2.000q^{24}*(q-1) [/mm] - [mm] 97,2*(q^{24}-1) [/mm] = 0

[mm] 2.000q^{25} -2.0q^{24} -97,2q^{24} [/mm] +97,2 = 0

[mm] 2.000q^{25} -2.097,2q^{24} [/mm] +97,2 = 0

Jetzt schätzen, einsetzen und ausprobieren oder Rechner (Online-Rechner) benutzen.

q = 1,0126986...

Viele Grüße
Josef

Bezug
                                                
Bezug
Effektivzins: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Mo 03.07.2006
Autor: Kira007

Ach das habe ich falsch gemacht wie gehts dann denn weiter

um auf die q = 1,0126986...  der Rest ist mir auch klar

Gruß kira



Bezug
                                                        
Bezug
Effektivzins: Tipp
Status: (Antwort) fertig Status 
Datum: 07:53 Di 04.07.2006
Autor: Josef

Hallo Kira,

> Ach das habe ich falsch gemacht wie gehts dann denn weiter
>
> um auf die q = 1,0126986...  der Rest ist mir auch klar


Jetzt schätzen, einsetzen und ausprobieren oder Rechner (Online-Rechner) benutzen.

q = 1,0126986...



oder nach dem Newton-Verfahren:

g(q) = [mm] 2.000q^{25} [/mm] -2.097,2 [mm] q^{24} [/mm] + 97,2

g'(q) = [mm] 50.000q^{24} [/mm] - 50.332,8 [mm] q^{23} [/mm]

mit einem Startwert von [mm] q_0 [/mm] = 1,01 beginnen.

usw.


Viele Grüße
Josef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]