Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo zusammen,
ich hab ein paar Fragen zu der folgenden Aufgabe, würd mich freuen, wenn ihr dass durchschaut. Danke schonmal....
Aufgabe 8: (Geraden und Ebenen)
Die Ebene E ist parallel zur x1-Achse und enthält die Punkte A(1/2/1,5) und B (2/4/0).
a) Skizzieren Sie die Ebene im Koordinatensystem und beschreiben Sie die Ebene in
mathematisch verschiedenen Formen.
b) Skizzieren Sie Ebenen in spezieller Lage und geben Sie jeweils eine mögliche
Gleichung dazu an.
c) Wie lassen sich Geraden im Koordinatensystem darstellen? Berücksichtigen Sie
auch spezielle Lagen.
Meine Vorschläge/ Fragen:
Zu 8a) Mathematisch verschiedene Formen? Ist damit gemeint, dass man die Ebenengleichung z.B. als Koordinatenform darstellen soll? Sowie diese Form beispielsweise: E: [mm] \vektor{1\\ 2\\1,5}+s\vektor{1 \\ 2\\-1,5}+t\vektor{1\\ 0\\0} [/mm]
Zu 8b) Was ist mit spezieller Lage gemeint?
Zu 8c) Geraden lassen sich im Koordinatensystem zB. als Lineare Funktion der Form
y= mx+b darstellen.
|
|
|
|
> Hallo zusammen,
>
> ich hab ein paar Fragen zu der folgenden Aufgabe, würd mich
> freuen, wenn ihr dass durchschaut. Danke schonmal....
>
>
>
> Aufgabe 8: (Geraden und Ebenen)
>
> Die Ebene E ist parallel zur x1-Achse und enthält die
> Punkte A(1/2/1,5) und B (2/4/0).
> a) Skizzieren Sie die Ebene im Koordinatensystem und
> beschreiben Sie die Ebene in
> mathematisch verschiedenen Formen.
> b) Skizzieren Sie Ebenen in spezieller Lage und geben Sie
> jeweils eine mögliche
> Gleichung dazu an.
> c) Wie lassen sich Geraden im Koordinatensystem darstellen?
> Berücksichtigen Sie
> auch spezielle Lagen.
>
> Meine Vorschläge/ Fragen:
>
> Zu 8a) Mathematisch verschiedene Formen? Ist damit gemeint,
> dass man die Ebenengleichung z.B. als Koordinatenform
> darstellen soll? Sowie diese Form beispielsweise: E:
> [mm]\vektor{1\\ 2\\1,5}+s\vektor{1 \\ 2\\-1,5}+t\vektor{1\\ 0\\0}[/mm]
Ja, es sind die verschiedenen mathematischen Formen wie Koordinatenform, Parameterform (die du hier beutzt hast, nicht die Koordinatenform!) und Normalenform gemeint, sofern ihr die habt.
Parameterform sieht so aus, wie du sie beschrieben hast, die Koordinatenform erhälst du dann, indem du zum Beispiel ein lineares Gleichungssystem für x,y und z aufstellst und die drei Variablen auf eine Seite bringst/die Parameter eliminierst.
> Zu 8b) Was ist mit spezieller Lage gemeint?
Ebenen mit spezieller Lage können z.B. Ebenen durch den Nullpunkt sein, die also die z-Achse enthalten. Dann wäre in der Koordinatenschreibweise die Zahl d auf der rechten Seite z.B. 0 Weitere spezielle Lagen sind z.B. eben Parallelitäten zu anderen Achsen, dann würde jeweils diese Variable nicht vorkommen (also Parallelität zur x-Achse bedeutet, dass x nicht in der Koordinatenform vorkommt, da Koeffizient 0)
Auch die [mm]E_{x,y}[/mm] ist eine spezielle Ebene. Da die Aufgabe aber sehr allgemein ist, sind das nur Anregungen
> Zu 8c) Geraden lassen sich im Koordinatensystem zB. als
> Lineare Funktion der Form
> y= mx+b darstellen.
Sollte es heißen ja, du kannst die Gerade entweder vektoriell zeichnen, also mit dem Startpunkt und dem Richtungsvektor, oder du nutzt die Koordinatenform, in der sie dann wie Ebenen aussehen und aus der Analysis bekannt sind.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:36 Di 03.06.2008 | Autor: | friendy88 |
Danke, konnte wieder alles gut verstehen, wie du es erklärt hast.
Allerdings würde mich interessieren, wie die Ebenengleichung aussehen würde, wenn sie durch den Nullpunkt geht?
Sie liegt also von einer Seite aus gesehen vollständig auf der Z-Achse...und die anderen Achsen?
Danke ansonsten für alles... ;)
|
|
|
|