www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - EV-EW-Lin.Abbildung Beziehung
EV-EW-Lin.Abbildung Beziehung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

EV-EW-Lin.Abbildung Beziehung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:37 Mo 26.09.2011
Autor: KENAN76

hallo,
ich habe vor mir eine aufgabe die ich auch nach langem überlegen nicht lösen kann.

gegeben ist eine lineare abbildung [mm] L:R\le2[x] [/mm] -> [mm] R\le2[x]. [/mm]
L habe die eigenwerte a1=1, a2=2 a3=3 mit den zugehörigen eigenvektoren
p1 (x)=1+x
p2 (x)=1-x
p3 [mm] (x)=x^2+2 [/mm]

zu bestimmen ist L.
wie muss ich hier vorangehen?
danke im voraus

        
Bezug
EV-EW-Lin.Abbildung Beziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:07 Di 27.09.2011
Autor: Schadowmaster

https://matheraum.de/read?i=822448

bitteschön ;)

falls in dem Tread nicht alle Fragen beantwortet werden frag ruhig.

MfG

Schadow

Bezug
                
Bezug
EV-EW-Lin.Abbildung Beziehung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:55 Di 27.09.2011
Autor: KENAN76

danke :)

ich habe für L die matrix [mm] \pmat{ 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 } [/mm] herhausbekommen.  ist es richtig?

Bezug
                        
Bezug
EV-EW-Lin.Abbildung Beziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:16 Sa 01.10.2011
Autor: angela.h.b.


> danke :)
>  
> ich habe für L die matrix [mm]\pmat{ 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 }[/mm]
> herhausbekommen.  ist es richtig?

Hallo,

Deine Matrix ist die darstellende Matrix von L bzgl. der Basis [mm] (p_1, p_2, p_3). [/mm] Diese hast Du richtig ermittelt.
Sie ist aber nicht das, was in dieser Aufgabe gefragt ist.

Ich denke, daß Du eher die Funktionsvorschrift angeben sollst, also
[mm] L(ax^2+bx+c):= [/mm] ???

Du findest diese, indem Du mithilfe einer Basistransformation die Darstellungsmatrix bzgl. der Standardbasis bestimmst, oder - etwas bodenständiger - indem Du direkt anhand passender Linearkombinatinen überlegst, was L(1), L(x), [mm] L(x^2) [/mm] ergibt.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]