www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Dynkin-System
Dynkin-System < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dynkin-System: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:00 Sa 10.05.2008
Autor: SorcererBln

Aufgabe
Finden Sie eine Menge minimaler Kardinalität und [mm] \epsilon\subset P(\Omega) [/mm] (Potenzmenge) mit der Eigenschaft, dass das von [mm] \epsilon [/mm] erzeugte Dynkinsystem nicht mit der von [mm] $\epsilon$ [/mm] erzeugten [mm] \sigma-Algebra [/mm] übereinstimmt. Beweisen
Sie, dass Ihr [mm] \Omega [/mm] eine kleinste Menge ist, auf der ein solches Beispiel existiert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich bin hier völlig ratlos und brauche nbedingt einen Tipp...

        
Bezug
Dynkin-System: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 So 11.05.2008
Autor: Somebody


> Finden Sie eine Menge minimaler Kardinalität und
> [mm]\epsilon\subset P(\Omega)[/mm] (Potenzmenge) mit der
> Eigenschaft, dass das von [mm]\epsilon[/mm] erzeugte Dynkinsystem
> nicht mit der von [mm]\epsilon[/mm] erzeugten [mm]\sigma-Algebra[/mm]
> übereinstimmt. Beweisen
>  Sie, dass Ihr [mm]\Omega[/mm] eine kleinste Menge ist, auf der ein
> solches Beispiel existiert.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich bin hier völlig ratlos und brauche nbedingt einen
> Tipp...

Da das von einem durchschnittsabgeschlossenen [mm] $\varepsilon$ [/mm] erzeugte Dynkin-System mit der von [mm] $\varepsilon$ [/mm] erzeugten [mm] $\sigma$-Algebra [/mm] übereinstimmt (bekannter Satz), musst Du Dich jedenfalls auf solche [mm] $\varepsilon$ [/mm] beschränken, die bezüglich Durchschnittsbildung nicht abgeschlossen sind. Vielleicht beginnst Du mal mit einer möglichst einfachen Wahl eines nicht durchschnittsabgeschlossenen [mm] $\varepsilon$ [/mm] und schaust ob und weshalb das erzeugte Dynkin-System mit der erzeugten [mm] $\sigma$-Algebra [/mm] (nicht) übereinstimmt?


Bezug
                
Bezug
Dynkin-System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:05 Mo 12.05.2008
Autor: andreas

hi

es ist hier vielleicht hilfreich sich system auf einer vierelementigen menge anzuschauen...


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]