www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Optimierung" - Dualisierungsproblem
Dualisierungsproblem < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dualisierungsproblem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:10 Do 02.05.2013
Autor: EvelynSnowley2311

Aufgabe
Sei (x,s) zulässiger Punkt von

P : max { [mm] c^T [/mm] x : Ax + s = b   , x,s [mm] \ge [/mm] 0 }

und (y,r) zulässiger Punkt des zu P dualen Problems


D : min { [mm] b^T [/mm] y : [mm] A^T [/mm] y - r = c , y,w [mm] \ge [/mm] 0 }

Zeige: (x,s) und (y,r) sind g.d. optimal, wenn [mm] x^T [/mm] r = 0 und [mm] y^T [/mm] s = 0.


Huhu,,
Also obige Probleme haben ja eine Schlupfvariable und sind ja eigentlich äquivalent zu den bekannten Problemen

P:=max {Ax [mm] \le [/mm] b , x [mm] \ge [/mm] 0} und D := min { [mm] b^T [/mm] y : [mm] A^T [/mm] y [mm] \ge [/mm] c , [mm] y\ge [/mm] 0 }

wobei ersteres ein Polyeder beschreibt und das duale Problem: Kann ich mir das auch als Polyeder darstellen?

Ich hab ehrlich gesagt zu keiner Richtung ne Ahnung. Was bedeutet optimal hier? Ist das der Punkt , der die Zielfunktion maximiert unter der Vor, dass Ax + u = b ist?

Ich weiß nicht wie ich das überführen kann, man sagt, dass die Schlupfvariable des prinmalen System mit zulässigen y aus dem dualen System senkrecht aufeinander stehen, sowie die primären zulässigen Vektoren x senkrecht auf den Schlufpvariablen aus dem dualen System stehen. Aber wie kann ich beide miteinander verfplechten?

Lg,

Eve

Edit:

Es müsste eig
[mm] c^T [/mm] x = [mm] (A^T [/mm] y [mm] +r)^T [/mm] x = [mm] y^T [/mm] A x + [mm] r^T [/mm] x = [mm] b^T [/mm] y + [mm] r^T [/mm] x

Und es gilt [mm] r^T [/mm] x = 0 eig nur dann wenn [mm] u_j x_j [/mm] = 0, da x und r [mm] \ge [/mm] 0

und das müsste äquivalent sein? zu [mm] x^T [/mm] ( [mm] A^T [/mm] y - c ) = 0 und [mm] y^T [/mm] (Ax -b) = 0 gleichzeitig. Aber so richtig schlau draus werd ich noch nicht, aber ich glaub das letzte hier geht in die richtige Richtung.

        
Bezug
Dualisierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 Fr 03.05.2013
Autor: wieschoo

Wo kommt das "w" beim dualen Problem her?

Die Aussage heißt (glaube ich) "Satz vom komplementären Schlupf".

Ich habe die Frage erst zu spät gesehen. Werde mich morgen noch einmal damit beschäftigen.

Bezug
        
Bezug
Dualisierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:37 Sa 04.05.2013
Autor: Marcel

Hi Evelyn,

> Sei (x,s) zulässiger Punkt von
>  
> P : [mm] \max \{ c^T x : Ax + s = b , x,s \ge0 \} [/mm]
>  
> und (y,r) zulässiger Punkt des zu P dualen Problems
>  
>
> D : [mm] \min \{ b^T y : A^T y - r = c , y,w \ge 0 \} [/mm]
>  
> Zeige: (x,s) und (y,r) sind g.d. optimal, wenn [mm]x^T[/mm] r = 0
> und [mm]y^T[/mm] s = 0.
>  
> Huhu,,

>...

> stellen?
>  
> Ich hab ehrlich gesagt zu keiner Richtung ne Ahnung. Was
> bedeutet optimal hier? Ist das der Punkt , der die
> Zielfunktion maximiert unter der Vor, dass Ax + u = b ist?

von "dem Punkt" kannst Du nur sprechen, wenn Du auch Eindeutigkeit hast.
Ich hab' "das OR-Zeugs" fast gänzlich nicht mehr im Kopf, und Du drückst es
nicht vollständig und auch nicht ganz korrekt aus, aber im Wesentlichen hast
Du es fast erfasst, was "optimal" hier bedeutet:
[mm] $(x_0,s_0)$ [/mm] ist (ein) optimal(er Punkt) für [mm] $P\,$ [/mm] genau dann, wenn gilt:
[mm] $x_0 \ge [/mm] 0$ und [mm] $s_0 \ge [/mm] 0$ und [mm] $Ax_0+s_0=b$ [/mm] und:
Für alle Punkte $(x,s)$ mit [mm] $x\ge 0\,,$ [/mm] $s [mm] \ge [/mm] 0$ und $Ax+s=b$ gilt
[mm] $$c^T [/mm] x [mm] \le c^T x_0\,.$$ [/mm]

(Grobgesagt: [mm] $(x_0,s_0)$ [/mm] ist ein Punkt, an dem 'der Funktionswert für $c^Tx$ "maximal"
wird (durch Einsetzen von [mm] $x=x_0$)', [/mm]
bzw. wo $c^Tx$ ihr Maximum annimmt, d.h. für alle anderen zulässigen Punkte [mm] $(x,s)\,$ [/mm]
ist $c^Tx$ kleinergleich dem Wert von [mm] $c^T x_0\,.$) [/mm]

Beachte aber bitte, dass [mm] $c^Tx_0$ [/mm] der "Funktionswert" ist und [mm] $(x_0,s_0)$ [/mm] "eine zugehörige zulässige Stelle"...

Vielleicht hilft Dir das ja schonmal zum Verständnis?!

Nebenbei: Gängig sind auch solche Schreibweisen, etwa für [mm] $P\,$: [/mm]
[mm] $$\max [/mm] c^Tx$$
s.t. [mm] $Ax+s=b\,,$ [/mm] $x [mm] \ge 0,\,$ [/mm] $s [mm] \ge 0\,.$ [/mm]

Gruß,
  Marcel

Bezug
                
Bezug
Dualisierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:53 Sa 04.05.2013
Autor: Marcel

P.S.

Nach etwas stöbern habe ich
[]hier (klick!)

ein Skript gefunden, wo die Begriffe "zulässiger Punkt" und "optimale Lösung"
wenigstens auch mal definiert werden (in anderen Skripten werden sie einfach,
wie selbstverständlich, verwendet...)
Wobei da in Definition 5.2 sicher [mm] $x^{(0)} \in [/mm] ZB$ stehen sollte, und kurz vor der Definition
von ZB das (N) eigentlich (NB) heißen sollte...

Gruß,
  Marcel

Bezug
        
Bezug
Dualisierungsproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 04.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]