www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Eigenwertprobleme" - Dritter Eigenwert /-vektor
Dritter Eigenwert /-vektor < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dritter Eigenwert /-vektor: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:28 Di 19.06.2012
Autor: chesn

Aufgabe
Es sei [mm] B\in\IR^{3x3} [/mm] eine symmetrische Matrix mit det(B)=9. Weiter sei zur Matrix B der Eigenvektor [mm] v=[1,1,0]^T [/mm] zum Eigenwert 2 und der Eigenvektor [mm] w=[2,-2,3]^T [/mm] zum Eigenwert 3 gegeben. Bestimmen Sie den dritten Eigenwert und einen zugehörigen Eigenvektor.

Hallo! Komme auf keinen Ansatz bei der Aufgabe.. hat jemand sowas schonmal gemacht?

Habe versucht mit [mm] B*v=\lambda_1*v [/mm] und [mm] B*w=\lambda_2*w [/mm] ein Gleichungssystem zu basteln [mm] (\lambda_i [/mm] Eigenwerte) und am Ende det(B)=9 einfließen zu lassen, um die Matrix B zu rekonstruieren.. hat mich aber bereits ins Leere geführt.

Auch mit [mm] B=SDS^T, [/mm] wobei S von dein Eigenvektoren aufgespannt wird und D eine Diagonalmatrix mit den Eigenwerten auf der Hauptdiagonalen ist, brachte mich zu nichts, da zu viele Variablen unbekannt sind.

Wie kann ich da Ansetzen? Denke mal B zu rekonstruieren ist nicht verlangt (wüsste jetzt auch nicht mehr wie).

Jemand eine Idee? Wäre sehr dankbar!

Lieben Gruß,
chesn

        
Bezug
Dritter Eigenwert /-vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Di 19.06.2012
Autor: angela.h.b.


> Es sei [mm]B\in\IR^{3x3}[/mm] eine symmetrische Matrix mit det(B)=9.
> Weiter sei zur Matrix B der Eigenvektor [mm]v=[1,1,0]^T[/mm] zum
> Eigenwert 2 und der Eigenvektor [mm]w=[2,-2,3]^T[/mm] zum Eigenwert
> 3 gegeben. Bestimmen Sie den dritten Eigenwert und einen
> zugehörigen Eigenvektor.

> Auch mit [mm]B=SDS^T,[/mm] wobei S von dein Eigenvektoren
> aufgespannt wird und D eine Diagonalmatrix mit den
> Eigenwerten auf der Hauptdiagonalen ist, brachte mich zu
> nichts, da zu viele Variablen unbekannt sind.

Hallo,

mit [mm] $B=SDS^T$ [/mm] zu arbeiten, ist aber nicht so dumm.

Du kennst detB. Was ist dann detD?
Wie lautet also der dritte Eigenwert?

Was weißt Du über die Eigenvektoren symmetrischer Matrizen?

LG Angela




Bezug
                
Bezug
Dritter Eigenwert /-vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:27 Di 19.06.2012
Autor: chesn

Tausend Dank Angela! :)

Die Diagonalmatrix D hat die gleiche Determinante wie B, also:

[mm] det(D)=\vmat{ 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \bruch{3}{2} }=9 \Rightarrow \lambda_3=\bruch{3}{2} [/mm]

Die Eigenvektoren sind orthogonal.. sei also der dritte Eigenvektor x, dann:

[mm] =x_1+x_2=0 [/mm]
[mm] =2*x_1-2*x_2+3*x_3=0 [/mm]

damit ergibt sich [mm] x=\pmat{ -3 \\ 3 \\ 4 } [/mm]

Passt das alles so?? Vielen Dank nochmal!!

Lieben Gruß,
chesn

Bezug
                        
Bezug
Dritter Eigenwert /-vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Di 19.06.2012
Autor: MathePower

Hallo chesn,

> Tausend Dank Angela! :)
>  
> Die Diagonalmatrix D hat die gleiche Determinante wie B,
> also:
>  
> [mm]det(D)=\vmat{ 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \bruch{3}{2} }=9 \Rightarrow \lambda_3=\bruch{3}{2}[/mm]
>  
> Die Eigenvektoren sind orthogonal.. sei also der dritte
> Eigenvektor x, dann:
>  
> [mm]=x_1+x_2=0[/mm]
>  [mm]=2*x_1-2*x_2+3*x_3=0[/mm]
>  
> damit ergibt sich [mm]x=\pmat{ -3 \\ 3 \\ 4 }[/mm]
>  
> Passt das alles so?? Vielen Dank nochmal!!
>  


Ja, das passt so. [ok]


> Lieben Gruß,
>  chesn


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]