www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Dreimaliges Würfeln
Dreimaliges Würfeln < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreimaliges Würfeln: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:31 Mi 22.08.2012
Autor: tanye

Aufgabe
Ein idealer sechsseitiger Würfel werde dreimal geworfen. Y sei die Zufallsvariable, die einem Tripel gewürfelter Augenzahlen das zugehörige schwach monoton steigende Tripel zuordnet.Bestimmen Sie die Verteilung von Y .

Hallo MR :) ,

Ich hab ein Problem mit der Aufgabe, im Sinne davon dass ich die Aufgabenstellung nicht verstehe bzw. glaube sie nicht verstanden zu haben.

Spontan hätte ich auf die Fragestellung geantwortet mit:

[mm] P_{\Omega '}((3,5,6)) [/mm] = [mm] P_{\Omega}(Y^{-1}(3,5,6)), [/mm] also dass es einfach die Urbilder von der Wurffolge sind.
Oder habe ich die Frage missverstanden ?

Bin für jede Antwort dankbar :) vG tanye

        
Bezug
Dreimaliges Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Mi 22.08.2012
Autor: Leopold_Gast

Ich glaube, du hast das richtig verstanden. Unterscheide die Wertetripel von [mm]Y[/mm] nach ihrem Typ, in offensichtlicher Schreibweise

aaa (drei gleiche, z.B. 444)
aab oder abb (zwei verschiedene, z.B. 225 oder 233)
abc (drei verschiedene, z.B. 245)

Dann kannst du die Wahrscheinlichkeiten

P(Y=aaa), P(Y=aab), P(Y=abb), P(Y=abc)

angeben. Und damit ist die Verteilung von [mm]Y[/mm] bekannt.

Bezug
                
Bezug
Dreimaliges Würfeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Mi 22.08.2012
Autor: tanye

Hi ! Danke für deine Antwort ! Ist aber bei dir P(Y=aab) nicht das gleiche wie P(Y=abb) ? Es geht doch darum, dass wie du sagtest 2 gleiche Würfe betrachtet werden.

Also wäre zu meiner Antwort eben ncoh zu ergänzen, dass P(Y=aaa),P(Y=aab) und P(Y=abc) die möglichen Verteilungen sind, richtig ?

Bezug
                        
Bezug
Dreimaliges Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Mi 22.08.2012
Autor: Leopold_Gast

Sagen wir so, P(Y=aab) und P(Y=abb) sind sicher gleich. Ich habe es jedoch für sinnvoll gehalten, aab von abb zu unterscheiden, schließlich kommt beim ersten die kleinere Zahl, beim zweiten die größere Zahl zweimal vor. Aber für die Wahrscheinlichkeiten macht es natürlich keinen Unterschied.

Bezug
                                
Bezug
Dreimaliges Würfeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Mi 22.08.2012
Autor: tanye

Ah, ... Ich verstehe :) Klar du hast Recht, Jagut vielen Dank dann ist mir das jetzt klar. vG tanye

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]