www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Dreiecksungleichung
Dreiecksungleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecksungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Sa 18.05.2013
Autor: Hero991

Hallo,
ich wiederhole gerade und versuche die Dreiecksungleichung nachvollziehen zu können.
Als ich den Übungszettel lösen musste, hab ich einfach mal geglaubt was mir Wikipedia über die Dreiecksungleichung mit reellen Zahlen sagt aber nachvollziehen konnte ich den Beweis nicht: [mm] http://de.wikipedia.org/wiki/Dreiecksungleichung#Dreiecksungleichung_f.C3.BCr_reelle_Zahlen [/mm]

Wie kommt man von |a + b| [mm] \le [/mm] |a| + |b| auf [mm] a^2 [/mm] + 2ab + [mm] b^2 \le a^2 [/mm] + 2|ab| + [mm] b^2 [/mm] ?

Das man bei |a| = [mm] a^2 [/mm] schreibt kann ich verstehen weil a=-x und +x sein kann aber wie kommt man auf 2ab und/oder 2|ab|?


        
Bezug
Dreiecksungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Sa 18.05.2013
Autor: Fulla

Hallo Hero991

> Hallo,
> ich wiederhole gerade und versuche die Dreiecksungleichung
> nachvollziehen zu können.
> Als ich den Übungszettel lösen musste, hab ich einfach
> mal geglaubt was mir Wikipedia über die
> Dreiecksungleichung mit reellen Zahlen sagt aber
> nachvollziehen konnte ich den Beweis nicht:
> [mm]http://de.wikipedia.org/wiki/Dreiecksungleichung#Dreiecksungleichung_f.C3.BCr_reelle_Zahlen[/mm]

>

> Wie kommt man von |a + b| [mm]\le[/mm] |a| + |b| auf [mm]a^2[/mm] + 2ab + [mm]b^2 \le a^2[/mm]
> + 2|ab| + [mm]b^2[/mm] ?

>

> Das man bei |a| = [mm]a^2[/mm] schreibt kann ich verstehen weil a=-x
> und +x sein kann aber wie kommt man auf 2ab und/oder
> 2|ab|?

Wie auf der Wiki-Seite beschrieben, wird einfach quadriert. Es ist [mm](|a+b|)^2=(a+b)^2=a^2+2ab+b^2[/mm] und [mm](|a|+|b|)^2=|a|^2+2|a||b|+|b|^2=a^2+2|ab|+b^2[/mm].


Lieben Gruß,
Fulla

Bezug
                
Bezug
Dreiecksungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Sa 18.05.2013
Autor: Hero991

uuuoh Okay, danke. Ich dachte da steckt was größeres hinter.

x [mm] \le [/mm] |x| weil [mm] |x|=x^2, [/mm] oder? Weil x positiv und negativ sein kann.

Bezug
                        
Bezug
Dreiecksungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Sa 18.05.2013
Autor: Fulla


> uuuoh Okay, danke. Ich dachte da steckt was größeres
> hinter.

>

> x [mm]\le[/mm] |x| weil [mm]|x|=x^2,[/mm] oder? Weil x positiv und negativ
> sein kann.

Im Allgemeinen ist [mm]|x|\neq x^2[/mm].

[mm]x\le |x|[/mm] gilt, denn für [mm]x\ge 0[/mm] ist [mm]|x|=x[/mm] und für [mm]x<0[/mm] ist [mm]|x|>x[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]