Dreiecksfläche/Volumen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 12:56 Sa 07.07.2007 | Autor: | americo |
Aufgabe | Berechnen Sie den Flächeninhalt und das Volumen eines Dreiecks mit den Eckpunkten (1;2;-2) , (2;3;-1) , (4;0;1) |
ich stehe momentan anscheinend auf dem schlauch.
wie fange ich damit an?
hab leider grad keinen plan und bitte dringend um hilfe.
(ergebnis der fläche ist 3,536)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:06 Sa 07.07.2007 | Autor: | americo |
oh mist!!!
sorry. irgendwie stehe ich anscheinend vollkommen auf der leitung.
ich ging von einer pyramide aus.
ich habe also die 3 punkte p1=(1;2;-2) , p2=(2;3;-1) , p3=(4;0;1)
jetzt kann ich den vektor p1p2=a mit p2-p1 berechnen und erhalte
a= (1;1;1)
den 2.vektor p3p2=b erhalte ich mit p3-p2
b=(2;-3;2)
weiter berechne ich jetzt das vektorprodukt aXb und erhalte somit die fläche des paralellograms aus den beiden vektoren a und b.
A= [mm] sqrt(5^2+0^2+5^2)=7,07.
[/mm]
die hälfte ist die gesuchte dreiecksfläche mit A=3.536
|
|
|
|