www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Dreieck halbieren
Dreieck halbieren < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck halbieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Mi 09.08.2006
Autor: mechanix

Aufgabe
Von einem Dreieck ABC kennt man die Seitenlängen a und b sowie den Winkel [mm]\gamma[/mm]. Auf [CA] soll ein Punkt D und auf [CB] soll ein Punkt E so bestimmt werden, dass die Strecke [DE] das Dreieck ABC halbiert und dabei so kurz wie möglich wird.  

Hallo,

ich bin schon wieder bei einer Extremwertaufgabe hängen geblieben :-/

Also mein Ansatz sieht folgendermaßen aus:


[CD]=d
[CE]=e
[DE]=c
Nebenbedingung:
[mm]A=d*e*\sin {\gamma}[/mm]

[mm]A=\frac{a*b*sin {\gamma}}{2}[/mm]

[mm] \frac{a*b*sin \gamma}{2}=d*e*\sin {\gamma} \Rightarrow \frac{\frac{1}{2}*a*b}{e}=d [/mm]



Zielfunktion:
[mm] c(d,e)=\sqrt{d^2+e^2-2de*\cos{\gamma}} [/mm]

Eingesetzt:
[mm] c(e)=e^2+\frac{a^2*b^2}{4*e^2}-\frac{ab}{e}*\sin{\gamma} [/mm]

[mm] c'(e)=2e-\frac{\frac{1}{2}*a^2*b^2}{e^3}+\frac{ab}{e^2}*\sin{\gamma} [/mm]

c'(e)=0

[mm] 0=2e^4-\frac{1}{2}*a^2*b^2+a*b*e*\sin{\gamma} [/mm]

Ist das soweit richtig?
Es wäre toll, wenn ihr mir helfen würdet, die Gleichung aufzulösen.

vielen dank im vorraus


gruß
mechanix

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

EDIT: Mir ist aufgefallen, dass die Benennung der Teile recht unübersichtlich ist. Daher habe ich  hier noch eine kleine Planskizze angefertigt:
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Dreieck halbieren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Mi 09.08.2006
Autor: riwe

da stimmt soweit alles, bis auf
[mm] c^{2}(e,d)=e^{2}+d^{2}-2ed*\cos\gamma [/mm]
mit [mm] d=\frac{ab}{2e} [/mm]
[mm] f(e)=e^{2}+(\frac{ab}{2e})^{2}-ab\cdot \cos\gamma [/mm]
der rest sollte dann kein problem sein
wenn es denn stimmt: d = [mm] \sqrt{\frac{ab}{2}} [/mm]

Bezug
                
Bezug
Dreieck halbieren: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Mi 09.08.2006
Autor: mechanix

Hallo riwe,

vielen Dank, du hast mir sehr geholfen. Ich habe jetzt auch d = [mm]\sqrt{\frac{ab}{2}}[/mm]  herausbekommen!

Gruß
mechanix

Bezug
                        
Bezug
Dreieck halbieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:37 Mi 09.08.2006
Autor: riwe

super!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]