www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Dreieck
Dreieck < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:04 Di 20.09.2005
Autor: JROppenheimer

Ich habe diese Frage in keinem anderen Forum gestellt!

Also mir ist das ja ein bisschen peinlich, weil im Grunde sollte das gar kein Problem sein. Aber nach jetzt 8 Wochen Semestereferien habe ich es geschafft, Mathe erfolgreich aus meinem Kopf zu verbannen. Nun hab ich versprochen einer Freundin bei einer Aufgabe zu helfen, jedoch glaube ich, dass sie mit MEINER Lösung nicht besonders viel anfangen kann, weil ich zwar eine finde, die aber SO kompliziert ist, dass das warscheinlich viel einfacher geht. Bei mir ist das immer durch die Brust ins linke Auge ... von daher hoffe ich, dass ihr mir da helfen könnt:

Gegeben sind die Punkte P [mm] \pmat{ -2 \\ 1 } [/mm] und Q [mm] \pmat{ 2 \\ 1 }. [/mm] Kann man einen (oder mehrere) Punkte R auf den Achsen des Koordinatensystems finden, damit PQR ein rechtwinkliges Dreieck ist?

Also grafisch ist das ja gar kein Problem.
Jetzt hab ich mir gedacht, wenn man den Mittlpunkt zwischen P und Q nimmt einen Kreis darum zieht, hat man die Menge aller Punkte die ein rechtwinkliges Dreieck bilden. Aber wird bei dem Dreieck nicht im Gegenuhrzeigersinn benannt? Dann gäbe es ja nur einen Punkt R auf der y-Achse, nämlich der, der im bei [mm] \pmat{ 0 \\ 1.5 }. [/mm]
Das kann man ja sogar per Pythagoras berechnen, oder einfachen Dreiecksformeln, weil man ja nur die Höhe des Dreiecks braucht, oder?

naja also die größte Einsicht kam mir eben beim Schreiben, aber für andere Ideen bin ich trotzdem offen

danke im Voraus J.R.

        
Bezug
Dreieck: Ansätze
Status: (Antwort) fertig Status 
Datum: 10:05 Di 20.09.2005
Autor: Roadrunner

Hallo J.R.!


Ist denn vorgeschrieben, bei welchem Punkt der rechte Winkel zu liegen hat bzw. ist [mm] $\overline{PQ}$ [/mm] als Hypotenuse vorgegeben?


Wenn man jetzt nicht allzu päpstlich umgeht mit der Nomenklatur (Beschriftung gegen den Uhrzeigersinn) gibt es natürlich noch mehr mögliche Punkte.

Ebenso wenn der rechte Winkel auch bei $P_$ oder $Q_$ liegen darf.


> Dann gäbe es ja nur einen Punkt R auf der y-Achse,
> nämlich der, der im bei [mm]\pmat{ 0 \\ 1.5 }[/mm] .

[notok] Hier erhalte ich aber $R \ [mm] \left( \ 0 \ | \ \red{3} \ \right)$ [/mm] ...


> Das kann man ja sogar per Pythagoras berechnen, oder einfachen
> Dreiecksformeln, weil man ja nur die Höhe des Dreiecks
> braucht, oder?

Das mit den Höhen versteh ich gerade nicht ...

  

> naja also die größte Einsicht kam mir eben beim Schreiben,
> aber für andere Ideen bin ich trotzdem offen


Ansonsten kannst du natürlich auch rechnerisch folgendermaßen vorgehen (Annahme: rechter Winkel bei $R_$) :

[mm] $\overline{PR} [/mm] \ [mm] \perp [/mm] \ [mm] \overline{QR}$ $\gdw$ $\overrightarrow{PR}*\overrightarrow{QR} [/mm] \ = \ 0$

[mm] $\vektor{x_R-(-2) \\ y_R-1}*\vektor{x_R-2 \\ y_R-1} [/mm] \ = \ [mm] \left(x_R+2\right)*\left(x_R-2\right) [/mm] + [mm] \left(y_R-1\right)^2 [/mm] \ = \ 0$

Und da $R_$ ja nun auf den Koordinatenachsen liegen soll, kannst Du in zwei Fälle unterscheiden: [1] [mm] $x_R [/mm] \ = \ 0$   bzw.   [2] [mm] $y_R [/mm] \ = \ 0$ .
Anschließend kann man dann jeweils die zugehörigen [mm] $y_R$ [/mm] bzw. [mm] $x_R$ [/mm] ermitteln.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]