www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Dreieck
Dreieck < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck: maximaler Inhalt
Status: (Frage) beantwortet Status 
Datum: 18:29 Di 19.12.2006
Autor: jane882

Aufgabe
...

Hey!
Kann jemand mal über die Aufgabe drüber gucken? Vielen Dank:)

Sei P(x/f(x)) ein beliebiger Punkt auf Kf mit x größergleich -1. Untersuche, für welchen Wert von x das Dreieck N(-1/0), P(x/f(x)), Q(x/0) maximalen Inhalt besitzt.
f(x)= (4x+4)*e^-x

A= 1/2*g*h
1/2* (x+1)* f(x)
1/2 (x+1)* (4x+4)*e^-x

= 0,5 * (x+1)*(4x+4)

= [mm] 0,5*(4x^2 [/mm] + 4x + 4x + 4)

= [mm] 0,5*(4x^2 [/mm] + 8x + 4)

= [mm] 2x^2 [/mm] + 4x + 2…fehlt hier nicht ein e^-x ???


A(-1)= 0
lim A(x)= 0
x-> unendlich

A`(x)= 2*(x+1)²* e^-x (-1)+4(x+1)*e^-x
=e^-x (x+1)(-2x-2+4)
= e^-x (x+1)*(-2x+2)

A´(x)= 0 ->x= -1, x= 1... haben die hier (x+1) oder (-2x+2) nullgesetzt?

A max, A(1)= 8e^-1


        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Di 19.12.2006
Autor: leduart

Hallo

> Sei P(x/f(x)) ein beliebiger Punkt auf Kf mit x
> größergleich -1. Untersuche, für welchen Wert von x das
> Dreieck N(-1/0), P(x/f(x)), Q(x/0) maximalen Inhalt
> besitzt.
> f(x)= (4x+4)*e^-x
>  
> A= 1/2*g*h
> 1/2* (x+1)* f(x)
>  1/2 (x+1)* (4x+4)*e^-x
>
> = 0,5 * (x+1)*(4x+4)

ab hier fehlt [mm] e^{-x} [/mm]

> = [mm]0,5*(4x^2[/mm] + 4x + 4x + 4)
>
> = [mm]0,5*(4x^2[/mm] + 8x + 4)
>
> = [mm]2x^2[/mm] + 4x + 2…fehlt hier nicht ein e^-x ???
>  

doch, das Ganze [mm] *e^{-x} [/mm]

> A(-1)= 0
> lim A(x)= 0
> x-> unendlich

>
> A'(x)= 2*(x+1)²* e^-x (-1)+4(x+1)*e^-x
> =e^-x (x+1)(-2x-2+4)
> = e^-x (x+1)*(-2x+2)
>
> A´(x)= 0 ->x= -1, x= 1... haben die hier (x+1) oder (-2x+2)
> nullgesetzt?

richtig

> A max, A(1)= 8e^-1

besser schreiben A max bei x=1.
und es ist ein Max,(kein Min) weil bei x=-1 und x gegen infty A=0
Also alles richtig.
Gruss leduart

Bezug
                
Bezug
Dreieck: e^-x
Status: (Frage) beantwortet Status 
Datum: 19:00 Di 19.12.2006
Autor: jane882

Aufgabe
...

also  A= 2x²+4x+2* e^-x ???

und haben die da (x+1) oder (-2x+2) null gesetzt um -1 und 1 zu erhalten?
Danke:)

Bezug
                        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Di 19.12.2006
Autor: M.Rex

Hallo

Dort steht:

A(x)=(2x²+4x+2)*e^-x

[mm] A'(x)=-e^{-x}*(2x²+4x+2)+e^{-x}(4x+4) [/mm]
[mm] =e^{-x}[-(2x²+4x+2)+4x+4] [/mm]
[mm] =e^{-x}(-2x²+2) [/mm]

Und da ein Produkt genau dann gleich Null wird, wenn eine der Faktoren Null wird, genügt es, den Faktor
-2x²+2 zu betrachten, da [mm] e^{x}\ne0 [/mm] für alle x.

also:

-2x²+2=0
[mm] \gdw [/mm] x²=1
[mm] \Rightarrow x=\pm1 [/mm]

Also liegen die Möglichen Extrema bei 1 und -1

(Tipp bei A(-1) sollte Null herauskommen, also bleibt nur noch a(1) als Maxima)

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]