www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstige Transformationen" - Doppelsummen
Doppelsummen < Sonstige < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelsummen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Do 03.03.2011
Autor: asulu211

Aufgabe
berechnen sie den Gradienten der Funktion in mehreren Variablen:
[mm] f(x_{1}, x_{2}, x_{3}) [/mm] = [mm] \summe_{i=1}^{3} \summe_{j=i}^{3} a_{ij} x_{i} x_{j} [/mm] + [mm] \summe_{i=1}^{3} a_{i} x_{i} [/mm] + c. [mm] a_{ij}, [/mm] i = 1,...,3, j = 1,...,3

Hallo an alle!
Sitze schon seit 3 stunden bei dieser aufgabe und komme einfach nicht auf die lösung... ich weiß zwar grundsätzlich wie man den gradienten berechnet, allerdings weiß ich nicht genau wie man die doppelsumme auflöst. Kann mir das bitte wer erklärn?
Danke schon mal im voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Doppelsummen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Do 03.03.2011
Autor: MathePower

Hallo asulu211,

> berechnen sie den Gradienten der Funktion in mehreren
> Variablen:
>  [mm]f(x_{1}, x_{2}, x_{3})[/mm] = [mm]\summe_{i=1}^{3} \summe_{j=i}^{3} a_{ij} x_{i} x_{j}[/mm]
> + [mm]\summe_{i=1}^{3} a_{i} x_{i}[/mm] + c. [mm]a_{ij},[/mm] i = 1,...,3, j
> = 1,...,3
>  Hallo an alle!
>  Sitze schon seit 3 stunden bei dieser aufgabe und komme
> einfach nicht auf die lösung... ich weiß zwar
> grundsätzlich wie man den gradienten berechnet, allerdings
> weiß ich nicht genau wie man die doppelsumme auflöst.


[mm]\summe_{i=1}^{3} \summe_{j=i}^{3} a_{ij} x_{i} x_{j}[/mm]

bedeutet zunächst ausgeschrieben:

[mm]\summe_{j=1}^{3} a_{1j} x_{1} x_{j}+\summe_{j=2}^{3} a_{2j} x_{2} x_{j}+\summe_{j=3}^{3} a_{3j} x_{3} x_{j}[/mm]

Und solche "Einfach-Summen" kannst Du jetzt auflösen.


> Kann mir das bitte wer erklärn?
> Danke schon mal im voraus.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruss
MathePower

Bezug
                
Bezug
Doppelsummen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Do 03.03.2011
Autor: asulu211

also ist dann
[mm] \summe_{j=1}^{3} [/mm] = [mm] a_{11} x_{1} x_{1} [/mm] + [mm] a_{12} x_{1} x_{2} [/mm] + [mm] a_{13} x_{1} x_{3} [/mm]
[mm] \summe_{j=2}^{3} [/mm] = [mm] a_{22} x_{2} x_{2} [/mm] + [mm] a_{23} x_{2} x_{3} [/mm]
[mm] \summe_{j=3}^{3} [/mm] = [mm] a_{33} x_{3} x_{3} [/mm]
oder versteh ich das grad falsch?
und wie ist das mit dem c: muss ich das auch einbeziehen oder gehört das nicht zur summe?

Bezug
                        
Bezug
Doppelsummen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Do 03.03.2011
Autor: MathePower

Hallo asulu211,

> also ist dann
>  [mm]\summe_{j=1}^{3}[/mm] = [mm]a_{11} x_{1} x_{1}[/mm] + [mm]a_{12} x_{1} x_{2}[/mm]
> + [mm]a_{13} x_{1} x_{3}[/mm]
>  [mm]\summe_{j=2}^{3}[/mm] = [mm]a_{22} x_{2} x_{2}[/mm]
> + [mm]a_{23} x_{2} x_{3}[/mm]
>  [mm]\summe_{j=3}^{3}[/mm] = [mm]a_{33} x_{3} x_{3}[/mm]
>  
> oder versteh ich das grad falsch?


Das verstehst Du vollkommen richtig.


>  und wie ist das mit dem c: muss ich das auch einbeziehen
> oder gehört das nicht zur summe?  


Das "c" gehört zur gegebenen Funktion.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]