www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Dividierte Differenzenschema
Dividierte Differenzenschema < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dividierte Differenzenschema: Wie mit Ableitungen umgehen
Status: (Frage) beantwortet Status 
Datum: 20:43 So 27.11.2005
Autor: Prinzessin83

Hallo Leute,

dieser Aufgabentyp ist eigentlich leicht, aber in der Aufgabenstellung gibt es jetzt eine "kleine" Veränderung.

Ich komme mal gleich zur Aufgabe.

Sei f eine Abbildung mit

f(0)=1
f'(0)=-1
f(1)=1
f(2)=7
f'(2)=3
f''(2)=-12

Wenden Sie das divierte Differenzenschema an und bestimmen Sie den
Hermite-Interpolanten p [mm] \in \produkt_{}^{}_{5} [/mm] für das Interpolationsproblem
[mm] p^{j}(i)=f^{j}(i),j=0,...,r_{i}-1,i=0,1,2 [/mm] in der Newton Darstellung.

Die Aufgabenstellung verstehe ich und ich weiß auch eigentlich
was ich machen muss. Denn ich habe schon ein paar von diesen
Aufgaben gerechnet.

Der Unterschied ist jedoch diesmal, dass ich abgeleitete Funktionen
gegeben habe und ich nicht weiß wie ich damit umgehen soll.

Normal macht man es ja nach dem Prinzip:

[mm] \Delta(x_0,x_1 :f)=\bruch{f(x_{0})-f(x_{1})}{x_{0}-x_{1}} [/mm]
[mm] \Delta(x_1,x_2 :f)=\bruch{f(x_{1})-f(x_{2})}{x_{1}-x_{2}} [/mm]
.
.
.
[mm] \Delta(x_0,x_1,x_2,x_3,x_4,x_5 :f)=\bruch{f(x_{0})-f(x_{5})}{x_{0}-x_{5}} [/mm]

Die Newton Darstellung danach ist mir auch klar.

Aber wie gehe ich mit den Ableitungen um ? Was ändert sich?

Kann mir das jemand erklären? Ich habe auf anderen Seiten/Topics
gesucht, aber wirklich keine hilfreiche Erklärung gefunden.

Danke Danke!!!

        
Bezug
Dividierte Differenzenschema: Erledigt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Mo 28.11.2005
Autor: Prinzessin83

Hat sich erledigt! Nach langem probieren und nachschauen im Skript habe ich das irgendwie geschafft!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]