www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Divergente Reihe
Divergente Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergente Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Di 08.01.2013
Autor: piriyaie

Aufgabe
[mm] \summe_{k=1}^{n} \bruch{1}{k} [/mm]

Hallo,

kann mir jemand erklären warum die obige Reihe divergiert?

die Folge [mm] a_{n}=\bruch{1}{n} [/mm] ist ja eine Nullfolge und konvergiert gegen Null.

Aber warum divergiert die Reihe????

Danke schonmal.

Grüße
Ali

        
Bezug
Divergente Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Di 08.01.2013
Autor: Richie1401

Hallo,

Fred hatte dazu mal einen, wie ich fand, wunderbaren Beweis gezeigt:

Sei [mm] s_n:=\summe_{k=1}^{n} \bruch{1}{k} [/mm]

Dann ist [mm] s_{2n}=s_n+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}\ge{}s_n+n*\frac{1}{2n}=s_n+\frac{1}{2} [/mm]

Angenommen [mm] s_n [/mm] konvergiert gegen den Grenzert s. Dann folgt die Ungleichung [mm] s\ge{s}+\frac{1}{2}. [/mm]
Subtraktion von s liefert [mm] 0\ge\frac{1}{2} \Rightarrow Widerspruch\Rightarrow s_n [/mm] ist divergent.

Bezug
                
Bezug
Divergente Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Di 08.01.2013
Autor: piriyaie

supi. danke :-D

Bezug
        
Bezug
Divergente Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Di 08.01.2013
Autor: reverend

Hallo Ali,

> [mm]\summe_{k=1}^{n} \bruch{1}{k}[/mm]
>  Hallo,
>  
> kann mir jemand erklären warum die obige Reihe
> divergiert?
>  
> die Folge [mm]a_{n}=\bruch{1}{n}[/mm] ist ja eine Nullfolge und
> konvergiert gegen Null.

>

> Aber warum divergiert die Reihe????

Eine Beobachtung: [mm] \bruch{1}{\blue{1}}>\bruch{1}{2},\;\; \bruch{1}{\blue{2}}+\bruch{1}{\blue{3}}\ge\bruch{1}{4}+\bruch{1}{4}=\bruch{1}{2},\;\; \bruch{1}{\blue{4}}+\bruch{1}{\blue{5}}+\bruch{1}{\blue{6}}+\bruch{1}{\blue{7}}\ge\bruch{1}{8}+\bruch{1}{8}+\bruch{1}{8}+\bruch{1}{8}=\bruch{1}{2}\;\;\;\cdots [/mm]

allgemeiner: [mm] \summe_{k=2^i}^{2^{i+1}-1}\bruch{1}{k}>\summe_{k=2^i}^{2^{i+1}-1}\bruch{1}{2^{i+1}}=\bruch{1}{2} [/mm]

Und damit kannst Du nun die unendliche harmonische Reihe umschreiben zu einer unendlichen Summierung von Summanden, von denen jeder [mm] >\tfrac{1}{2} [/mm] ist:

[mm] \lim_{n\to\infty}\summe_{k=1}^{n}\bruch{1}{k}=\lim_{n\to\infty}\summe_{i=0}^{n}\summe_{k=2^i}^{2^{i+1}-1}\bruch{1}{k}>\lim_{n\to\infty}\summe_{i=0}^{n}\bruch{1}{2} [/mm]

> Danke schonmal.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]